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Performance of wireless ad-hoc networks is essentially degraded by co-channel
interference. Since the interference at a receiver crucially depends on the
distribution of the interfering transmitters, mathematical technique is needed to
specifically model the network geometry where a number of nodes are randomly
spread. This is why stochastic geometry approach is required.

In this thesis, we study about stochastic point processes such as Poisson Point
Process, Matérn Point Process, and Simple Sequential Inhibition Point Process.
The interference distributions resulting from the different point process are
compared, and in CSMA/CA networks, point process’s limitation issue such as
the under-estimation of the node density is discussed. Moreover, we show that the
estimated interference distribution obtained by Network Simulator 2, is different
with respect to the different point process.

Even if there is the existence of gap between the distributions from the point
processes and the simulator due to active factors, they all offer similar shape which
follows a peak and an asymmetry with a more or less heavy tail. This observation
has promoted an interest in characterizing the distribution of the aggregated
interference with the Log-normal, Alpha-stable, and Weibull distributions as a
family of heavy tail distributions. Even though hypothesis tests have mostly
led to the reject of the null assumption that the interference distribution by the
simulator is a random sample from these heavy tailed distributions except for the
Alpha-stable distribution in high density. The hypothesis statistics systematically
yield agreement on the choice of the better approximation. Moreover, the log
probability process certainly makes it possible to reliably select the most similar
heavy tailed distribution to the empirical data set on the variation of node density.

Keywords: Interference modelling, Stochastic geometry,
Poisson point process, Matérn point process, Simple Sequential In-
hibition process.
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Chapter 1

Introduction

1.1 Motivation and Related Work

Spectral Resource reuse technique has been studied over the last decade to improve
throughput capacity of wireless systems such as adhoc and sensor networks and
cellular networks. While spectral resource reuse leads to capacity improvement, it
causes co-channel interference, one of the key factors degrading overall performance
in wireless communications. Therefore, a better understanding of the effects of in-
terference on the performance of wireless communication system demanding a more
aggressive utilization of spectral resources, for instance the newly emerged Cognitive
Radio system, has become an important critical issue, motivating the development
of more accurate interference models.

An interference model can be regarded as a mixture of different sub-models such as
propagation model, interferers spatial distribution model, network operation model,
and traffic model, each of which could be employed as a deterministic or random
process, depending on the scenario considered. Since the accumulative interference
generated by concurrent transmitting nodes overwhelmingly depends on nodes’ lo-
cation and the geometry information plays an important role in the interference
modelling process, this thesis focuses on effective(active) interferers spatial distri-
bution model, while the other components are taken into consideration under some
assumptions which will be presented later.

Significantly unequal to infrastructure based wireless systems, there is high level of
uncertainty in adhoc network which is formed by a number of nodes randomly spread
over a large area. The position of the nodes are usually unknown, and hence the
interference situation cannot be controlled by careful network planning. Therefore,
a stochastic approach is required to properly describe the interference distribution.

In fact, a myriad of the spatial distribution models of the nodes have been suggested
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with using stochastic geometry tool which enable to make on average all realizations
of the network whose nodes are placed according to some distribution, such as Pois-
son Point Process [1] which is analytically convenient and leads to some insightful
results with its independence property.

However, in practice, this process is not accurate anymore for a CSMA/CA protocol
in which a spatial correlation between nodes is introduced by medium access policy
to avoid collisions. In recent works [2] [3], some researchers already made objection
to this issue by modifying the initial Poisson process, so called hardcore models [4]
where a minimum node separation is properly applied.

Nevertheless, they are still in their infancy due to some flaws [20] such as the spatial
anomaly and thus an underestimation of the interference level. In [5], the use of an
alternate model, referred to as the Simple Sequential Inhibition (SSI) point process
was proposed. However, they do not provide the practical results by simulator.

1.2 Scope

In this thesis, we first introduce different point processes, and then compare the
interference distributions resulting from these different ones. Moreover, we point
out how different they are with practical simulation results induced by NS-2, and
check whether the simulated interference could be extrapolated by considered dis-
tributions such as a log-normal or an alpha-stable distribution, thereby giving a
benefit to engineers and researchers looking for appropriately approximated one to
practical interference distribution as well as interference models in some particular
scenario.

1.3 Contribution and Organization

This thesis is organized as follows.

Chapter 2 contains a description of the concepts that are essential for understanding
the analysis that is to follow in the remaining of this thesis. The concepts of Point
process and shot noise are introduced and a short introduction to heavy tailed
distributions is presented.

In Chapter 3, the system model is introduced. Channel and MAC models used
for this thesis are described. With results on Laplace functional of Poisson shot
noise processes, some interference models for CSMA/CA network are introduced,
and limitations for these models are discussed in detail.
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Chapter 4 provides the results that are obtained by simulation tool, NS2. Based on
the practical results, analysis for the interference models is discussed, and we test
an extrapolation with the distribution resulting from NS-2.

Finally, conclusions and possible future research directions are discussed in Chapter
5.



Chapter 2

Preliminaries

In this chapter, we give a thorough background description on the concepts that
are essential for understanding the analysis that follows in the remaining of this
thesis. We begin in Section 2.1 with Point process and shot noise concept which
are needed for stochastic geometry. Furthermore, in Section 2.2, we provide a short
introduction to Alpha-stable, Log-normal, and Weibull distributions, which we will
encounter in analysis of simulation result.

2.1 Spatial Point Process

In a case that every node has a single antenna and only a single channel is consid-
ered, interference is referred to as co-channel interference. In the statistical analysis
of interference in wireless networks, the aggregate interference is the incoherent sum
of individual interfering signals. The statistical characteristics of interference ob-
viously depend on the statistics of the individual interfering signals. One of the
main factors invoking the randomness of the individual interfering signals could be
the distances between the location at which interference is received and interfering
nodes. Since the distances influence on the mean power levels of interfering sig-
nals, these distances play an important role in the modelling process. Therefore,
a stochastic model for the node locations (i.e., a spatial point process) is needed.
Spatial point processes are the generalization of point processes indexed by time
to higher dimensions, such as 2-D space. Stochastic geometry provides the tools
to analyse important quantities such as interference distributions and link outages,
and thus permits statistical statements about network performance [2, 3]. It shall
allow us to focus on interference distributions in this thesis.

Formally, a point process Φ is viewed as a set of random points with a certain prob-
ability in a space E, where it is the Euclidean space R

d of dimension d ≧ 1. The
intensity measure Λ of a point process Φ is equal to the average number of points
in a set B ⊂ R

d, and could be defined as:

4
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Λ(B) = E(Φ(B)) for Borel B. (2.1)

Here are a few basic definition concerning point processes on some Euclidean space
R

d:

• Stationary: xi and xi + x have same distribution.

• Isotropy: the same holds for all rotations about the origin.

• Motion-invariance: Stationary plus isotropy.

2.1.1 Poisson Point Process

Due to its analytical tractability and practical appeal in situations where transmit-
ters and/or receivers are located or move around randomly over a large area, the
Poisson point process (PPP) has been by far the most popular spatial model. Let
Λ be a locally finite measure on some metric space E, the Euclidean space R

d. A
point processes Φ is Poisson on E if

• For all disjoint subsets {A1, ..., An} ⊂ R
d, the random variable Φ(A1), ...,Φ(An)

are independent.

• For all sets A ⊂ R
d, the random variables Φ(A) are Poisson.

The density of nodes in a unit area is λ, and so the average number of nodes in an
area A is Λ(A) = λA.

2.2 Shot Noise

Stochastic geometry combines the shot noise process with stochastic point processes
which are drawn from a statistical distribution, most commonly the PPP as just
discussed. We begin this section by reviewing some basic concepts on shot noise
theory, considering the one dimensional case at first and the higher dimensional one
for the interference modelling.

Let us consider a memoryless linear filter with stochastic impulse response function
f(h, t), where h is a random variable, and assume this filter is excited by a train of
impulses at instants tj derived from a one-dimensional Poisson Point process with
intensity(density) λ.

As illustrated in Figure 2.1, the output I(t) of the filter can be expressed as

I(t) =
∑

i

f(hj , t− tj) (2.2)
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Figure 2.1: Shot Noise results from linearly filtering a PPP

where {hj} is independent of tj and a random sequence, whose elements are drawn
from a common distribution. The output I(t) is said to be the shot noise associated
with the Poisson Point process with intensity λ.

Through employing the concept above, we can build extension of this framework to
higher dimensional networks. In order to model the location of transmitters in the
wireless network, two-dimensional Poisson Point process defined in the Euclidean
plane R

2 is remarkably considered for the shot noise process related to the interfer-
ence modelling.

Figure 2.2: Interference modelling based on the shot-noise model, assuming deter-
ministic path loss channel model

Next, the linear filter used in the 1-D case discussed above now models the path loss
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attenuation observed by interfering signals measured at receiver terminal located at
the origin. Assuming a power-law decay model able to characterize the path loss
attenuation, of the distance r between the transmitter and the receiver, with path
loss exponent η, then the impulse response of the shot noise model is now written
as f(h, r) = hr−η. Therefore, the interference is modelled as

I =
∑

i∈Π

hiri
−η (2.3)

where h is a random variable that models other effects of the propagation channel
associated with the i−th interferer, and Π represents the Poisson point process de-
fined by the interfering terminals. Figure 2.2 shows a physical interpretation of the
interference modelling based on the shot noise model.

2.3 Heavy tailed distribution

It shall be stressed that any interference distribution observed for Poisson distributed
interferers has the strongly skewed nature, unlike the classical observation [6]. Thus,
some heavy tailed distributions are typical candidates for practical interference dis-
tributions to be considered in this thesis. In this section, we provide a short intro-
duction to heavy tailed distributions including the Alpha-stable, Log-normal, and
Weibull distributions we encounter in the chapter 4.

2.3.1 Alpha-stable distribution

The Alpha-stable distribution is a generalization of the Gaussian distribution. Alpha-
stable distribution has heavier tails than the Gaussian distribution. Due to the lack
of closed-form formulas for PDFs, the Alpha-stable distribution is often described
by its characteristic functionϕ(u), which is the Fourier transform of the PDF:

fAlphastable(x;α, β, δ, γ) =
1

2π

∫

∞

−∞

ϕ(u)exp(−ixu)du. (2.4)

and the characteristic function is below:

ϕ(u) = exp{jδu− γ|u|α[1 + jβsign(u)w(u, α)]}

where

w(u, α) =







tan
(πα

2

)

, for α 6= 1

2

π
log |u|, for α = 1
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sign(u) =







1, for u > 0
0, for u = 0

−1, for u < 0

with the following definition for four parameters:
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Figure 2.3: Skewed Alpha-stable densities, β = 0 , δ = 0, γ = 1
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Figure 2.4: Skewed Alpha-stable densities, α = 0.5 , δ = 0, γ = 1
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• Characteristic exponent(α ∈ [0, 2]) measures the thickness of tails of the dis-
tribution; A small value of α will imply strong impulsiveness and considerable
probability mass in the tails of the distribution, as shown in Figure 2.3.

• Symmetry parameter(β ∈ [−1, 1]) sets the skewness of the distribution; when
it is zero, the distribution is symmetric, as shown in Figure 2.4.

• Location parameter(δ ∈ [−∞,∞])is similar to the mean in the normal distri-
bution.

• Scale parameter(γ > 0) is similar to the variance in the normal distribution.

The PDF of Alpha-stable random variable can be determined by taking the inverse
Fourier transform of its characteristic function ϕ(u) in (2.4). However, no closed-
form expression exists for the Alpha-stable distribution, except for:

• For α = 2, the Gaussian distribution.

• For α = 1, β = 0, the Cauchy distribution.

• For α = 0.5, β = −1, the Pearson distribution.

Stable distribution with α < 2 differ from Gaussian ones in many ways. First, the
tails decay like a power function. The smaller α, the slower the decay, and the
heavier the tails. Moreover, Gaussian distributions are always symmetric around
their mean, whereas the Alpha-stable distributions can exhibit arbitrary degrees of
skewness. Due to these reasons, Gaussian distributions are not useful for modelling
systems with high variability and random variables that are non-negative, while the
Alpha-stable distributions are more flexible and do not exhibit such limitation.

The four parameters in the Alpha-stable distribution can not be directly derived
from conventional statistical methods. Instead, several numerical methods, such as
the maximum likelihood, have been developed to calculate these parameters. In this
thesis, in order to estimate these parameters, we shall use Mark Veillette’s Matlab
stable distribution package [7].

2.3.2 Log-normal and Weibull distributions

Log-normal and Weibull are two most popular distributions for analysing skewed
asymmetric data. The two distributions have several interesting properties and
their PDFs can take different shapes.

The Log-normal distribution is based on the normal distribution. It describes a
variable, x, where log(x) is normally distributed. It is valid for values of x which
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Figure 2.5: Log-normal densities, m = 0
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Figure 2.6: Weibull densities, ν = 1

are greater than zero. The PDF of the Log-normal distribution is

fLognormal(x;m, σ) =
1

xσ
√
2π

exp

(

−(ln x−m)2

2σ2

)

, x > 0. (2.5)

where m is the location parameter or log mean, and σ is the scale parameter or
log standard deviation. The location parameter is the mean of the data set after
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transformation by taking the logarithm, and the scale parameter is the standard
deviation of the data set after transformation. The Log-normal distribution takes
on several shapes depending on the value of the shape parameter. The Log-normal
distribution is skewed right, and the skewness increases as the value of σ increases.
Similarly, the density function of a Weibull distribution, with scale parameter ν>0
and shape parameter k>0 is

fWeibull(x; ν, k) = kν−kx(k−1)exp
(

−x

ν

)k

, x > 0. (2.6)

In chapter 4, lognfit and wblfit functions included in Matlab Statistical Toolbox
are used to estimate the parameters for the Log-normal and Weibull distributions.



Chapter 3

SYSTEM MODEL

In this chapter, we present the system model, and apply some of the techniques in-
troduced in the previous section to study the interference in ad hoc networks. This
chapter is organized as follows: We begin with channel model and MAC model in
Section 3.1 and 3.2 respectively. For interference model, Section 3.3 presents some
results on Laplace functional of Poisson shot noise processes. Some Interference
models for CSMA/CA network, that is, exclusively deployed nodes, are introduced
and discussed in Section 3.4.

3.1 Propagation Channel Model

The two main propagation effects considered in this thesis are: (1) deterministic
path loss and (2) small scale fading. These effects are described in the following.

Deterministic path loss models the attenuation suffered by a signal while traveling
from the transmitter to the receiver. At a given location x, the power of a signal
received from node y is given by P l(x; y). P is the transmission power of node y,
and a function l(x; y) gives the attenuation (path loss) from y to x in R

2. For the
deterministic path loss function, the following singular model will be our default
assumption in this thesis. We will take for η > 2:

l(r) = l(x; y) = l(|x− y|) = 1

|x− y|η = r−η (3.1)

where η is the path loss exponent.

Propagation occurs through multiple paths between transmitter and receiver in a
typical wireless communication environment, and several replicas of the transmitted
signal reaching the receive antenna can be considered as a spatially non correlated
and time variant process. These replicas combine with each other in a constructive or
destructive way, resulting in a received signal with rapid envelope fluctuation. Sev-

12
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eral classical statistical distributions are commonly used to describe the envelope (or
power) of the received signal. In this thesis, the amplitude fading is assumed to be
the Rayleigh distribution. The functional form of the Rayleigh fading distribution is

Pr(a) =
a

σ2
exp

(−a2

2σ2

)

(3.2)

where a is the envelope amplitude of the received signal, and σ2 is the pre-detection
mean power of the multipath signal. When dealing with received signal powers, the
power fading variable is used by denoting P = a2, exploiting that the probability
density function for the power is

Pr(P ) =
1

P̄
exp

(

−P

P̄

)

(3.3)

where P stands for power and P̄ is the mean of P , that is, the received signal power
by path loss which is exponentially distributed with unit mean.

3.2 Medium Access Control

IEEE 802.11 DCF is considered for the CSMA/CA protocols [25]. The medium
access control (MAC) protocol defines the rules for assessing the radio medium.
The mechanism to determine whether or not the medium is busy is called CCA
(Clear Channel Assessment). In this thesis, CCA is performed according to the
following mode:

• Energy above threshold. CCA shall report a busy medium upon detection
of accumulative signal power above a threshold called carrier sense threshold,
ICSTh. In this case, it could be expressed as

∑

i Pil(ri) ≤ ICSTh where ri is the
distance from the effective node i to the sensing node, and the random parts
of noise is not considered.

Given a carrier sense threshold, ICSth, the corresponding carrier sense range, DCS,
is defined as the minimum distance allowed between two concurrent transmitters.
In practical simulation by NS-2 which shall be introduced in next Chapter, CCA
Energy above threshold Mode above is performed so that aggregate interference
power value is evaluated with a given ICSTh. In fact, DCS is a non-deterministic
parameter that can significantly affect the MAC performance in ad hoc networks. It
balances the trade-off between the amount of spatial frequency reuse and the likeli-
hood of packet collision. Therefore, it should be carefully chosen, based on network
parameters such as network topology, traffic pattern, and transceiver power.



14

However, the deterministic carrier sense range is used e.g. in [9] [11] by exploiting
the one-to-one mapping between a ICSTh, and a DCS. There is a further attempt
to find the optimum carrier sensing range to maximize the throughput in [10]. For
simplicity, point processes which shall be introduced in this Chapter employ the
deterministic DCS which can be expressed as:

Dcs =

(

P0

ICSTh

)1/η

(3.4)

where P0 is transmission power and DCS is carrier sense range.

3.3 Interference Models for PPP spatial node dis-

tribution

Nodes are deployed randomly at positions specified by a Poisson distribution. For
the space R

2, the probability that the area A in a PPP has n number of nodes is

Pr(N = n) =
(λA)n

n!
exp(−λA) (3.5)

where N is the number of points and λ is the intensity(also called density) measure
for the infinite planar. Then, we obtain the interference from nodes deployed by the
PPP with node density λPPP which are the number of the potential and effective
transmitters on the plane R

2. Node geometry for PPP with λPPP−eff follows:

ΦPPP = {(Xi
PPP , (ei

PPP , Pi
PPP ))}, (3.6)

where we have the following.

• {i} denotes a node’s index.

• {Xi} denotes the location of the node i.

• {ei} denotes the medium access indicator of the node i; ei=0 means that the
node is a potential receiver. ei=1 means that the node is a effective transmitter.
The random variable ei are independent, with Pr(ei = 1) = peff . The effective
factor peff is the probability that a node has a packet to be transmitted at
some time instant. Then we can express that λPPP−eff = λPPPpeff .

• {Pi} denotes the powers emitted by the station whose ei is 1; The random
variable {Pi} are assumed to be independently and identically distributed with
exponentially distributed powers with mean 1/µ.
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Suppose that interference sensed at a node located at y ∈ R2 follows process ΦPPP .
Through using the concept of shot noise process introduced in Chapter 2 and the
attenuation function shown in Subsection 3.1, the shot noise process of ΦPPP can
be represented as

IΦPPP
(y) =

∑

Xi∈ΦPPP

Pil(|y −Xi|). (3.7)

Except for the path loss η = 4 case, the closed form of the shot noise distribution
is not known for the other values of the path loss. In [8], the mean total received
power is known as :

E[IΦPPP
] = E[1/µ]λPPP−eff

∫

R2

l(|y|)dy =
2πλPPP−eff

µ

∫

∞

0

rl(r)dr (3.8)

and the Laplace transform is also known as:

LIΦPPP
(s) = exp

{

−2πλPPP−eff

∫

∞

0

r

1 + µ/(sl(r))
dr

}

= exp

{

−λPPP−eff

(

s

µ

)(2/η)

K(η)

}

, (3.9)

where K(η) =
2π2

η sin(2π/η)
=

2πΓ(2/η)Γ(1− 2/η)

η
and Γ(z) =

∫

∞

0
tz−1e−tdt is the

Gamma function.

For η = 4 case, the PDF and CDF exists. From Lf(s) = s · LF (s), CDF [28] [8] is:

FIΦPPP
(t) = Pr(IΦPPP

≤ t)

= L−1























exp

{

−λPPP−eff

(

s

µ

)(1/2)

K(4)

}

s























= efrc









λPPP−effK(4)√
µ

2
√
t









= efrc

(

λPPP−effπ
2

4
√
µt

)

(3.10)

by using the fact that inverse Laplace transform of
exp(−a

√
s)

s
, a ≥0, is erfc

(

a

2
√
t

)

,

where erfc(x) =
2√
π

∫

∞

x
e−t2dt is a complementary error function. Accordingly, PDF
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is:

fIΦPPP
(t) =

d

dt
FIΦPPP

(t)

=

exp

(

π4λPPP−eff
2

16µt

)

π3/2µλPPP−eff

4(µt)3/2
(3.11)

3.4 Interference Models for Exclusively Deployed

Nodes

According to CSMA/CA, only one can get a chance to access the channel among
multiple nodes within overlapped carrier sensing region. Each node should be sur-
vived or discarded according to whether the distance between the nearest effective
nodes is greater than the carrier sense range. In this thesis, only effective nodes are
considered for interference models.

3.4.1 Poisson Point Process with modified density

In order to model the carrier sense range, the hard-core point process, in which
the constituent points are forbidden to lie closer together than a certain minimum
distance, one of thinning functioned process of initial point process is used in [4].
Thinning function means to discard certain existed points according to a given pol-
icy. since the determination of surviving points depends on the relative distance to
other points already determined to survive, this thinning has a dependent charac-
teristic.

In this model, the eventual node geometry which we consider here follows:

ΦPPPmd = {(Xi
PPPmd, (ei

PPPmd, Pi
PPPmd))} (3.12)

with modified node density measure given as follows:

λPPPmd =
1− exp(−λPPP−effπDCS

2)

πDCS
2 (3.13)

where PPPmd denotes PPP with modified density. DCS is the carrier sensing range.
Elements of this process are ei

PPPmd = 1 and Pi
PPPmd = Pi as in (3.6) respectively.

For CDF [28] [8] of the new shot noise interference in η = 4 case, we replace
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λPPP−eff of (3.11) with this new node density, λPPPmd:

FIΦPPPmd
(t) = erfc

(

λPPPmdπ
2

4
√
µt

)

(3.14)

Accordingly, PDF is

fIΦPPPmd
(t) =

d

dt
FIΦPPPmd

(t) =

exp

(−π4λPPPmd
2

16µt

)

π3/2µλPPPmd

4(µt)3/2
(3.15)

3.4.2 Matérn Point Process

An alternate temporal sequence version of the Matérn point process could be ad-
vocated [1] [2] to model interference in CSMA/CA network. A process where a
subset of transmitters has been already chosen, is needed for the measure of the in-
terference at a given point. So, a temporal scheduling between the points is requred.

A temporal Matérn point process is defined as an iterative procedure that sequen-
tially tries to place n non-overlapping discs of radius DCS in the plane. Denote this
process ΦMPP where MPP means Matérn Point Process. In this subsection, we
start with this point process built as follows:

ΦMPP = {(Xi
MPP , (ei

MPP , Pi
MPP ))} (3.16)

Elements of this process are ei
MPP = 1 and Pi

MPP = Pi as in (3.6) respectively.
Then, ΦMPP is developed as follows:

• Let N be a positive integer.

• Let Xi, where i = 1, ..., N , be a sequence of random variables independently
and uniformly distributed in finite observation, B(O,R), the ball of radius R
centered at O.

• Let ΦMPP (i) be the set of points selected after i steps.

• At the ith step, the point Xi is distributed and selected in ΦMPP (i) if and only
if none of the i − 1 previous points, even the inactive ones, lies in the finite
plane BXi

, the ball centered at Xi with radius DCS.

• After all of the N points are processed with discrete Poisson distribution, the
procedure finally ends.

• The point X1 is distributed first and systematically selected in ΦMPP (1).
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• The Matérn point process ΦMPP (N) is built for i ∈ [2, N ] according to:

X(i) ∈ ΦMPP (i), iif |Xi −Xj| > DCS ∀j ∈ [1, i− 1] (3.17)

At each step, a new node attempts to access the channel medium. If its distance
to all other points is greater than the carrier sensing range, it succeeds. Otherwise,
the node is kept inactive. However, this inactive node is involved in the selection
process of the following points. Note that the selection of a new point as active
node depends on all previous points, even the inactive ones. This illustrates a spa-
tial anomaly of the Matérn process related to the fact that inactive nodes give an
impact on the selection process. In the end, the fact that unselected nodes play
a role in the selection process limits the node coverage to a portion of the plane.
The consequence is an underestimation of the effective transmitters density in the
network and so far an underestimation of the interference.

3.4.3 Simple Sequential Inhibition

In order to complement the flaws of the alternate temporal sequence version of the
Matérn point process presented in previous subsection, we discuss another point pro-
cess, the Simple Sequential Inhibition(SSI) point process, which is first introduced
by Palasti [12] and seems to be more appropriate model for CSMA/CA networks.

In this subsection, we start with the point process built as follows:

ΦSSI = {(Xi
SSI , (ei

SSI , Pi
SSI))} (3.18)

Elements of this process are ei
SSI = 1 and Pi

SSI = Pi as in (3.6) respectively. Then,
ΦSSI is developed as follows:

• Let N be a positive integer.

• Let Xi, where i = 1, ..., N , be a sequence of random variables independently
and uniformly distributed in finite observation, B(O,R).

• Let ΦSSI(i) be the set of points selected after i steps.

• At the ith step, the point Xi is distributed and selected in ΦSSI(i) if and only
if none of the i−1 previous points, only the active ones, lies in the finite plane
BXi

, the ball centered at Xi with radius DCS.

• After all of the N points are processed with discrete Poisson distribution, the
procedure finally ends.

• The point X1 is distributed first and systematically selected in ΦSSI(1).
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• The SSI point process ΦSSI(N) is built for i ∈ [2, N ] according to:

X(i) ∈ ΦSSI(i), iif |Xi − Z| > DCS ∀Z ∈ ΦSSI(i− 1) (3.19)

At each step, a new node attempts to access the channel medium. If its distance to
all other points is greater than the carrier sense range, it succeeds. Otherwise, the
node is kept inactive and no longer considered in the selection process, unlike the
previous Matérn process one.

Figure 3.1 depicts samples of the point processes with a set of active nodes se-
lected through different point process, PPP, PPPmd, MPP, and SSI, respectively
with a large enough number of nodes. This obviously shows the under-estimated
interference issue. In PPP model, nodes are selected regardless of the carrier sense
range, leading to a very different interference distribution compared to the others
with more suitable for CSMA/CA protocol. With the modified density in (3.14),
PPPmd operates like PPP. The exclusion region with the given DCS is applied to
MPP and SSI models to discard the node attempting the channel medium. Since
the selection process of SSI process just ignores inactive nodes dissimilar to the one
of MPP, it is clearly different for the number of the selected node between MPP and
SSI, hence the SSI model compensates for the main flaw of the Matérn model.

3.5 Challenge of Point Processes

In practice, CSMA/CA ad hoc networks [25] are formed by randomly deployed nodes
including active transmitters giving theirs disturbance effects to their neighbours,
and potential transmitters which could also be act as receivers.

From perspective of the point processes in introduced in previous sections, a point
under consideration is simply viewed as an active transmitter already selected among
all of the nodes. Therefore, a receiver or potential transmitter in practical situation
is just a point that does not belong to the point process, Φ. In other words, the
point processes do not reflect on the effective factor, peff , which is the probability
that a node has a packet to be transmitted at some time instant.

So, there is undoubtedly difference between the consequences of the point process
and practical scenario for IEEE 802.11 DCF based on the CSMA/CA protocol [25]
which shall be implemented by NS-2 [24] [26] in the next Chapter. This challenge
ultimately motivates us to show by simulation the difference between the interference
distributions from the point processes and the simulated distribution by NS-2, and
suggest that which distribution both interference consequences converge toward.
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Figure 3.1: Sample of point process for λ = 0.05 nodes/m2 DCS = 15m. (a) PPP.
(b) PPPmd (c) MPP. (d) SSI.



Chapter 4

Simulation Results and Analysis

The aim of this section is to validate how the practical results generated by NS-2
simulator match the different point processes introduced in previous Chapter. We
then perform hypothesis test to check whether the empirical interference distribu-
tion could be extrapolated by some considered distribution. In Section 4.1, we first
briefly show comparisons between the Matlab simulation results and the theoretical
closed forms derived from PPP and PPP with modified density. On the basis of
this certainty, we can extend our validation with NS-2 simulator. Simulation pa-
rameters and scenario used in NS-2 are introduced in Section 4.2. We carry out the
comparison among the point processes in Section 4.3, and the existing gap between
interferences from different processes and NS-2 is discussed in Section 4.4. Hypoth-
esis test is executed in Section 4.5.

4.1 NS-2 Simulation Set-up

The simulations have been performed using NS-2 [24]. It is discrete event simulator
and more common among researchers’ community since it is an open- source simu-
lator. The NS-2.34 version, the latest version [24] [26], is used for our experiments.
Since cumulative SINR computation is offered by continuously tracking the sum of
all reception power values of all frames arriving in parallel and of the noise floor,
such significant information makes it possible to obtain the aggregate interference
power level.

In simulator, PowerMonitorthreshold is used to reduce the number of entries
recorded in the interference list. For example, if a signal power from a transmitter
is less than the value of this PowerMonitorthreshold at a receiver, the receiver
does not consider the transmitter as an interferer giving an effect on the aggre-
gate interference power. In our simulation, we use a small enough value of the
PowerMonitorthreshold value so that all of nodes in a grid can be monitored and
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considered as interferers.

Preamblecapture feature is used in this simulation. While the receiver node is re-
ceiving the preamble and PLCP(Physical Layer Convergence Procedure) header of
an earlier frame, if a new frame arrives at the receiver and it has sufficiently higher
power which is PreambleCaptureThreshold value above the earlier one, the new
frame can be picked. Likewise, while the receiver node is receiving the data of an
earlier frame, if a new frame arrives at the receiver and it has sufficiently higher
power which is DataCaptureThreshold value above the earlier one, then it immedi-
ately abandons the previous frame and attempts to decode the preamble and PLCP
header of the new frame.

MAC header is transmitted with defined BPSK modulation(6Mbps), while the MAC
data can be coded in a much higher modulation scheme, but in our simulation, it is
also coded with BPSK modulation.

Figure 4.1 shows one of the scenarios in our simulation. In this thesis, the simulation
descriptions are presented as follows:

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

X(m)

Y
(m

)

Figure 4.1: Topology Simulated NS2, measuring point at (100, 100)
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Category Parameter Value

PHY 802.11a

Frequency 5.9GHz
Transmission Power 1mW
Channel bandwidth 20MHz
Data rate(BPSK modulation) 6Mbps
Power monitor threshold 0.12346pW
Noise floor 1.9764nW
Carrier sense threshold 6.25nW
SINR preamble capture 4dB
SINR data capture 10dB

MAC 802.11a

Slot time 9us
SIFS time 16us
ShortRetryLimit 7
LongRetryLimit 4
CWmin 15
CWmax 1023
Header Duration 20us
Symbol Duration 4us
RTS Threshold 0

Scenario

Grid Circle using radius 100m
Node density 0.0005, 0.005, 0.05 nodes/m2

Simulation iteration 100
Number of measured data 10,000

in each iteration
Number of total measured data 1,000,000
Simulation duration 15s
Monitored time 5s

Application

Maximum packet number 10000
Packet rate 6Mbps
Traffic type CBR(UDP)
Data payload 1500Bytes/packet

Table 4.1: Simulation Configuration values

• For simplicity, we limit our simulation to single-hop transmission.

• For the CSMA/CA protocol, IEEE 802.11a DCF [25], CCA operation is per-
formed according to the aggregated power level monitored in NS-2.34. If any
detected power level is above the carrier sense threshold ICS, CCA shall report
a busy medium.

• For the wireless channel, Rayleigh fading effect is considered with the mean of
power P in (3.3). In order to generate random value for this, we use the random
number generator implemented by the RNG class [29], defined in s/rng.h of
NS2-34.
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• By putting 0 into the value of RTS threshold, the RTS/CTS handshake is
automatically operated regardless of packet size which is 1500 Bytes with
CBR in this thesis. The sending channel rate of the source node and packet
rate are 6 Mbps, thereby making the traffic saturated.

• Wireless nodes are uniformly distributed in area of circle with radius R 100m.
"Uniformly distributed" means that all regions of the shape are equally likely
to be selected by the random number generator. More formally, the probability
of a number falling in a particular region is proportional only to the area of
the region. For this, let a node on a circle with R centered at origin be defined
by (r cos(θ), r sin(θ)) where r is the distance [0, R] from the origin and θ is the
angle [0, 2π]. The values of r and θ are generated by uniform function in the
RNG class [29]. This implementation is illustrated in Appendix B.

• Transmission procedures are operated amongst themselves according to ran-
domly generated traffic scenario which is presented in Appendix B. All of the
generated nodes are assigned to start transmission to each destination at a
random time between 0 and 1 second until the maximum number 10000 of
packets is transmitted or the simulation time 15 second is ended.

• The monitoring node (Red point in Figure 4.1) is additionally fixed at (100,100)
to simply measure the aggregate power level of concurrent signals resulting
from other nodes’ transmissions. The measuring operations occur at "Drop"
event [26]. In perspective of this monitoring node, all of the concurrently
transmitting packets are seen as interference signals, since no node transmits
a packet to the monitoring node as the transmitter’s destination in our simu-
lation.

• The whole simulation runs 100 times, but for each iteration, we extract the
interference power level information within the specific time duration in order
to ensure the case all of the nodes start to participate into the transmission.

• For satisfying node distribution with a given node density, λ, at each iteration,
the number of nodes in the area of a circle with radius R is generated as a
random variable with poisson distribution (3.5) with parameter λπR2 at each
iteration. The implemented code is shown in Appendix B.

• We sample 100,000 data from the measured total data, 1,000,000, from NS-2
simulation,. Half of this sampled data is used for plotting the PDF or CDF
distributions of NS-2 result, and the other half is used for estimating the
parameters of a considered distribution which shall encounter later as a fitting
process.

Parameters used in our simulation are summarized in Table 4.1 with scenario de-
scriptions. All the simulations presented later follow these parameters.
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4.2 Theoretical and Experimental values of Inter-

ference distribution

As discussed in previous Chapter, the exact closed forms of the shot noise distribu-
tion for PPP and PPPmd can be only obtained, when the path loss η is 4. Using
the inverse Laplace transform technique, we can derive the CDFs and PDFs from
(3.11), (3.12), (3.15), and (3.16). In this Section, we compare the values from the
theoretical closed form distribution with experimental results generated by Matlab,
thereby providing the reliable foundation to compare with the practical ones based
on NS-2 in the following Section.
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Figure 4.2: Theoretical results, and Experimental results in Matlab for λPPP =
0.0005 nodes/m2 and λPPPmd = 0.0375 nodes/m2 when ICSTh= 6.25 nW. (a) CDF.
(b) PDF.

In Figure 4.2, we have plotted the PDFs and CDFs of the interference. For simplic-
ity, theo denotes the results from the closed forms, and sim denotes the simulation
results from Matlab.

When it comes to PPPmd, we consider the modified node density measure given
in (3.14) with the carrier sense range, DCS. In order to obtain the real integer
value from the modified node density, the number of nodes which is used in Matlab
simulation, we use the ceiling(⌈⌉) and floor(⌊⌋) functions. We note that the theoret-
ical result for PPPmd is very close to the experimental results using the respective
number of nodes obtained by the ceiling and floor functions. Theoretical result and
experimental one for PPP are also seen to be same. Since the obtained density
by ceiling fucntion offers slightly more accurate result with theoretical one, we use
the result from node density using ceiling function for PPPmd from the next Section.
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4.3 Process Comparisons

In this Section, we compare PDFs and CDFs of interferences of the 4 point process
models, PPP, PPPmd, MPP and SSI, and NS-2 simulation. The interference distri-
butions for different node densities are shown as well.
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Figure 4.3: CDFs for the interference distributions of different processes, when
ICSTh= 6.25 nW. (a) λ = 0.0005 nodes/m2. (b) λ = 0.005 nodes/m2, (c) λ = 0.05
nodes/m2.

In Figures 4.3 (a) to (c), we compare the interference CDFs along with density
variation for the point processes. For low λ, all of the point processes offer sim-
ilar interference distributions one another. More precisely and analytically, they
all tend to follow the distribution of poisson point process. Since the possibility
that some nodes reside within the radius, DCS of one node is relatively very low,
thereby making CSMA/CA scheme considering any dependency between the differ-
ent transmission location appears to operate independently like Aloha scheme. As
node density gets larger, interference distributions among different point processes
start to differ more and more. For highest λ, the interference distribution by PPP
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Figure 4.4: PDFs for the interference distributions of different processes, when
ICSTh= 6.25 nW. (a) λ = 0.0005 nodes/m2. (b) λ = 0.005 nodes/m2, (c) λ = 0.05
nodes/m2.

becomes far from the other point processes, since it still consider all of the effective
nodes unlike other processes.

In Figures 4.4 (a) to (c), the interference PDFs are plotted on a normal scale. Here
we can see that PDF’s peak point for each process is affected by a variation of den-
sity. For very sparse network, all of the processes offer similar shapes one another. In
denser case, among the different point processes, there is huge dissimilarity regard-
ing the variance of the distribution as well as peak point difference. Especially the
difference of MPP and SSI interference distributions get large in more dense case,
resulting from the phenomenon in which SSI makes an effort to resolve the flaw of
MPP which underestimates the number of concurrent transmitters as discussed in
previous chapter. Accordingly, the interference value of SSI’s peak point is larger
than of MPP’s peak point.

Through Figure 4.5 summarily showing the interference distribution by NS-2, we
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Figure 4.5: NS-2 simulation-based interference distribution for different values of λ,
when ICSTh= 6.25 nW. (a) CDF. (b) PDF.

can confirm that the practical interference distribution also varies with the different
density.

4.4 Difference with NS-2 results

In Figure 4.6, the practical result by NS-2 and interference distributions by the point
processes are illustrated. Note that the interference distributions generated by the
various point processes are significantly different with the practical results by NS-2.
The main reason for the existence of gap is that node densities used in the inter-
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Figure 4.6: Gap between NS-2 simulation-based interference distribution and Point
processes-based interference distributions, when ICSTh= 6.25 nW. (a) λ = 0.0005
nodes/m2. (b) λ = 0.005 nodes/m2, (c) λ = 0.05 nodes/m2.

ference models are assumed to be effective node density representing only effective
transmitters, not potential ones. Thus, the point process models simply concern
the aggregated interference power level which decays with distance from interferes,
whereas the NS-2 simulation result is derived by nodes’ effective characteristic fac-
tor, peff which practically results from some parameters related to MAC layer and
Application layer, such as initial contention window size, contention window size,
retry-limit, traffic generation rate, and so on. Furthermore, different from the fact
that the deterministic DCS is employed by (3.4) in the presented point process mod-
els, DCS is nondeterministic in NS-2 simulation. Thus, DCS could be decided by the
CCA mode(Energy above threshold) mentioned in Section 3.2 with a carrier sense
threshold ICSTh.

Nevertheless, since they all offer the similar shape: a peak and an asymmetry with
a more or less heavy tail depending on the point process in Figure 4.7, it is enough
worth of notice. This observation absolutely contradicts a classical assumption in
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Figure 4.7: PDF shapes with asymmetric and heavy tailed behaviour, when ICSTh=
6.25 nW. (a) λ = 0.0005 nodes/m2. (b) λ = 0.005 nodes/m2. (c) λ = 0.05 nodes/m2.

the signal processing community where the interference is generally considered to be
Gaussian [6]. Some researcher in [30] indicates that when considering the aggregate
interference, as a number of interferers in a network goes to infinity, the Gaussian
distribution is a proper approximation for the distribution of the aggregate inter-
ference. However, we should pay attention to the fact that in the case where some
of the interferers are dominant, the central limit theorem(CLT) [23] is not valid
anymore [31], even if the number of interferers may be large.

Figure 4.8 shows the PDFs of the interference distribution by NS-2, compared with
a Gaussian distribution on Log Scale. Here, using normfit function in MATLAB
toolbox, we fit the Gaussian distribution to the NS-2 result. According to Figure
4.8 (a), there is obvious difference between the NS-2 result and Gaussian distribu-
tion. Figure 4.8 (b) also shows that the distribution forming tail part of the overall
distribution is also hugely different from a Gaussian distribution, due to the heavy
tailed characteristic of the NS-2 result, which is mainly produced by the dominant
interferers around a node. In fact, different from other literatures [32] [33], in our
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Figure 4.8: Comparison between NS-2 simulation-based histograms for the interfer-
ence and Gaussian fit, when ICSTh= 6.25 nW and λ = 0.005 nodes/m2. (a) Overall.
(b) Dominant. (c) No dominant

scenario, a measuring node centered at origin without any sense range or exclusion
range, just measures the concurrently transmitting signal power without discard-
ing any node. Therefore, many interferers around the node are dominantly able to
give an effect on aggregate interference with strong power. Ultimately, our scenario
makes it possible to offer an opportunity generally aware of interference distribution
at any arbitrary point from a geometry, not a conditionally restricted situation in
which a measuring node also participate in communication.

In addition, it is observed from Figure 4.8 (c) that the interference distribution ex-
cluding the dominant values seems to approximate the similar shape to the Gaussian
distribution. It means that even if not an infinite random field of interferers, limited
geometry decided by finite planer or PowerMonitor threshold value in PowerMonitor
module of the NS-2 simulator, is considered, the distribution without the dominant
interference is close to a Gaussian one.
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4.5 Statistical Significance Test

In this section, the difference between point process models and NS-2 result is ob-
jectively proven by value of statistics which simply offer the trend in variation of
node density. We test several hypotheses that the interference by NS-2 conforms log-
normal, Weibull or Alpha-stable distribution, and further obtain log-probabilities to
find the most similar distribution to the empirical one.

4.5.1 Hypothesis Checking Technique

We use the Matlab numeric computing environment and its Statistics Toolbox, a
collection of tools supporting general statistical functions to curve fitting. The
techniques of hypothesis checking consist of two basic procedures. First, values of
distribution parameters are to be estimated by analysing experimental sample. Sec-
ond, the null hypothesis that experimental data have a particular distribution with
certain parameters should be checked. To perform hypothesis checking itself, the
kstest2 and chi2gof functions are used in the subsection 4.5.2 and 4.5.3, respec-
tively or both.

4.5.2 process comparison with NS2 result

In this subsection, the kstest2 function, h = kstest2(x1,x2), performs a two-sample
Kolmogorov-Smirnov test to compare the distributions of the values in the two data
vectors, x1 and x2 which are interference results by NS-2 and one of the point
processes. The null hypothesis is that two vectors are from the same continuous
distribution. The alternative hypothesis is that they are from different continuous
distributions. Result h is equal to "1" if the hypothesis can be rejected, or "0" if
we cannot reject that hypothesis. The function also returns the p-value which is
the probability that the null hypothesis can not be contradicted. The test statistic
value is used to decide whether or not the null hypothesis should be rejected. In our
work, we reject the hypothesis if the test is significant at the 5% level(p-value less
than 0.05).

Let the first sample be the NS2 results with CDF F (x1) and squentially put one
of the different point processes into the second sample group with CDF Gi(x2), in
order to compare NS2 result with one of the processes.

H0 : F = Gi vs. H1 : F 6= Gi, ∀ i ∈ PointProcesses.

The statistic, shown in Table 4.2, is used to compare the fitness of NS-2 with each
process. For large sample size, the approximate critical value Dα is 0.0086 with
α = 0.05 and n= 50000, according to this equation:
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λ (nodes/m2) 0.0005 0.005 0.05

Critical Value (Dα) 8.601395e-03 8.601395e-03 8.601395e-03
G1 PPPmd 7.981769e-01 8.225285e-01 7.368599e-01
G2 MPP 8.105696e-01 8.605087e-01 7.908243e-01
G3 SSI 8.124147e-01 9.110835e-01 9.021974e-01
G4 PPP 8.391473e-01 9.640765e-01 9.931161e-01

Table 4.2: Kolmogorov-Smirnov test statistic for different density, when ICSTh= 6.25
nW

Dα = c(α)

√

n1 + n2

n1n2

where n1 and n2 are the sample sizes of x1 and x2, respectively, and the coefficient
c(α) is given by the table below.

α 0.10 0.05 0.025 0.01 0.005 0.001
c(α) 1.22 1.36 1.48 1.63 1.73 1.95

Table 4.3: the coefficient c(α) values for α in [22]

Since all of the Kolmogorov-Smirnov test statistic values are larger than the critical
value Dα, we reject all of the null hypotheses that interference distributions from
NS-2 and each of Point processes are from the same continuous distribution.

As mentioned in the previous section, since each of precesses and NS-2 result belong
to the different mean and variance, more precisely, unlike NS-2 results, a family of
point process models considered in this thesis do not reflect on the realistic factors,
such as some parameters in MAC layer for CSMA/CA system, it is no wonder that
the rejection resulting from these statistic values is induced. Therefore, the absolute
value above cannot suggest which point process gives the best fit to realistic inter-
ference distribution. Nevertheless, in the density variation’s effect point of view, we
can observe that the difference between statistics is larger, as the node density is
larger. It could lead to the interpretation that interference distributions of point
process models are absolutely affected by the density variation.

However, there is no knowing whether or not the rejections for all of the null hy-
potheses are only caused by the peff not taken into consideration. In the context,
it is required to find an effective node density offering the best fit or approxima-
tion to the interference distribution by NS-2, thereby making it possible to reliably
compare NS-2 result to process results. Figure 4.9 shows the inverse statistic values
obtained in Kolmogorov-Smirnov test making comparison between NS-2 simulation-
based interference distribution with λ and interference distributions of PPP and
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Figure 4.9: Kolmogorov-Smirnov test Inverse statistics of PPP with λPPPeff
and

PPPmd with λPPPmd
for NS-2 simulation-based interference distribution and, when

ICSTh= 6.25 nW. (a) λ = 0.0005 nodes/m2. (b) λ = 0.005 nodes/m2. (c) λ = 0.05
nodes/m2.

NS-2 PPP PPPmd PPPmd Inverse
Statistics Dα(λ) (λPPPeff

) (λPPPmd
) (λ′

PPPeff
) -statistics

0.0005 3.65e-05 3.65e-05 5.39e-05 20.0227 4.94e-02 8.601395e-03
0.005 6.25e-05 6.25e-05 9.39e-05 19.4401 5.14e-02 8.601395e-03
0.05 9.60e-05 9.60e-05 1.48e-04 22.2124 4.50e-02 8.601395e-03

Table 4.4: λPPPeff
and λPPPmd

offering the best approximation to NS-2 simulation-
based interference distributions, and corresponding statistic values, when ICSTh=
6.25 nW

PPPmd with λPPPeff
and λPPPmd

, respectively, which are varied with interval den-
sity 5e − 07. At every interval density, in order to sample interference values, the
inverse CDFs for (3.10) and (3.14) are computed with uniform random numbers
(50000) between 0 and 1.
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Figure 4.10: NS-2 based interference distribution with λ, and PPP and PPPmd
interference distributions with the optimal λPPPeff

and λPPPmd
, respectively, when

ICSTh= 6.25 nW. (a) λ = 0.0005 and λPPPeff
, λPPPmd

= 3.65e− 05 . (b) λ = 0.005
and λPPPeff

, λPPPmd
= 6.25e− 05. (c) λ = 0.05 and λPPPeff

, λPPPmd
= 9.60e− 05.

In Table 4.4, the effective node densities, λPPPeff
of PPP and λPPPmd

of PPPmd,
offering the best approximation to NS-2 results with different λ are summarized.
λ′

PPPeff
denotes λPPPeff

term of PPPmd in (3.13) to avoid confusion with λPPPeff

of PPP. Figure 4.10 shows NS-2 based interference distribution with λ, and PPP
and PPPmd interference distributions with the optimal λPPPeff

and λPPPmd
, re-

spectively. According to the Kolmogorov-Smirnov test statistic values larger than
Dα, we objectively reject all of the null hypotheses that interference distributions
from NS-2 with different λ and interference distributions of PPP and PPPmd with
corresponding λPPPeff

and λPPPmd
, respectively, are from the same continuous dis-

tribution. It means that PPP and PPPmd models do not offer the perfect fit to
the practical interference distribution induced by NS-2. Yet, it could be clearly ob-
served that the effective node densities, λPPPeff

and λPPPmd
, do not get large much,

while it increases 10 times in the λ. This observation reflects on the fact [34] [35]
that even though the saturation traffic in Table 4.1 could increase a case where a
node is ready to transmit a data to a receiver, the CSMA/CA scheme introduces a
reasonable transmission probability with RTS/CTS mode and exponential random
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backoff scheme used in NS-2 simulation, making an effect on effective node geometry.

4.5.3 Extrapolation Analysis

As discussed in the previous section, the interference distribution presents a peak
and a heavy-tail. Several distributions such as Alpha-stable, Log-normal, Weibull,
K-distribution, Gamma or Laplacian distribution have been proposed to model this
heavy-tailed distribution. We here focus on the Alpha-stable, Log-Normal, and
Weibull distributions.

In this subsection, in order to execute more reliable measurement, with Kolmogorov-
Smirnov test, the chi2gof function, additionally performs a Chi-square goodness-
of-fit test of default null hypothesis that interference result by NS-2 is a random
sample from the Alpha-stable, Log-Normal, or Weibull distribution with estimated
parameters in Table 4.6 for each distribution. The test is performed by grouping
the data into bins, calculating the observed and expected counts for those bins, and
computing the chi-square test statistic

χ2 =

N
∑

i=0

(Oi −Ei)
2

Ei
,

where N is the number of samples, Oi are the observed counts in each bin, and
Ei are the expected counts in each bin. In order to get comparable quantities, the
number of bins, nbins is 10 as default, and the N is 50,000 for NS-2 result.

In Figures 4.11(a) to 4.11(c), we plot the interference PDFs on log scale for NS-2
result to compare with the Alpha-stable, Log-normal and Weibull distributions. As
we can see, the Weibull distribution does not follow the shape of PDF by NS-2 for
all of the different density cases, while the Log-normal and Alpha-stable distribu-
tions offer a rough or close approximation of the practical interference distribution
by NS-2 for the different density of nodes.

Chi-square Alpha-stable Log-normal Weibull

Degree Freedom 5 7 7
Critical Value (χα

2) 11.071 14.067 14.067
λ = 0.0005 5.148101e+03 4.108520e+03 2.859666e+04
λ = 0.005 2.242956e+04 2.734669e+03 2.270185e+04
λ = 0.05 1.107098e+01 3.107760e+03 1.945508e+04

Table 4.5: Chi-square test statistics for different heavy tailed distributions with NS-2
result, when ICSTh= 6.25 nW
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Figure 4.11: Heavy tailed distributions and NS-2 simulation-based interference his-
tograms for different density, when ICSTh= 6.25 nW. (a) λ = 0.0005 nodes/m2. (b)
λ = 0.005 nodes/m2. (c) λ = 0.05 nodes/m2.

Kolmogorov-Smirnov Alpha-stable Log-normal Weibull

Critical Value (Dα) 8.601395e-03 8.601395e-03 8.601395e-03
λ = 0.0005 1.182000e-01 8.932000e-02 1.860800e-01
λ = 0.005 1.681400e-01 6.822000e-02 1.564000e-01
λ = 0.05 8.240000e-03 7.222000e-02 1.442800e-01

Table 4.6: Kolmogorov-Smirnov test statistics for different heavy tailed distributions
with NS-2 result, when ICSTh= 6.25 nW

Nevertheless, the χ2 and Kolmogorov-Smirnov tests mostly lead to the reject of the
null assumption that interference induced by NS-2 is a random sample from the
considered heavy tailed distributions above. The χ2 and the Kolmogorov-Smirnov
statistics presented in Table 4.4 and 4.5 allow us to objectively compare the accu-
racy of the Alpha-stable, Log-Normal, and Weibull approximations.
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We can see that the χ2 and Kolmogorov-Smirnov statistics are larger than the crit-
ical value corresponding to each distribution and hypothesis test except for only
the Alpha-stable distribution in dense case. Thus, we clearly conclude that all of
the distributions qualitatively do not fit to the empirical result by NS-2 except for
only the Alpha-stable distribution in dense case, even if the Log-normal distribution
offers close approximation in the Figure 4.11. It should be, however, noted that
the statistical values in both hypothesis tests for Log-normal distribution seem to
be better than those for the Alpha-stable and Weibull distributions, when λ are
0.0005 and 0.005 nodes/m2. According to the statistics of the hypothesis tests, the
Alpha-stable distribution fits in extream case of node densities, and the Log-normal
distribution is, for the other densities, the best approximation among these consid-
ered heavy tailed distributions.

In order to find a distribution most similar to the interference distribution induced
by NS-2 among the Alpha-stable, Log-Normal, and Weibull distribution, we here
concentrate on the probability of NS-2 data set with 50000 samples same as hypoth-
esis tests. Loosely speaking, the probability for the data set is the joint probability
of a particular set of data given the chosen probability model and set of parameters
which has been already estimated from the fitting process in Matlab, as shown in
Table 4.6.

Let x1, ..., xn be an i.i.d. random sample from NS-2 data set, and for a given set of
parameters, a probability density function Pr is given by

PrAs(x1, x2, ..., xN |θAs) =

N
∏

i=1

[
∫ xi+ǫ

xi−ǫ

fAs(xi|θAs)dx

]

PrLn(x1, x2, ..., xN |θLn) =
N
∏

i=1

[
∫ xi+ǫ

xi−ǫ

fLn(xi|θLn)dx

]

PrWb(x1, x2, ..., xN |θWb) =

N
∏

i=1

[
∫ xi+ǫ

xi−ǫ

fWb(xi|θWb)dx

]

where N is the number of sample, f is the continuous pdf, and 0 < ǫ << 1. Here, we
call As Alpha-stable, Ln Log-normal and Wb Weibull distributions. Due to numer-
ical considerations, the logarithm of the probability density functions is employed
because the use of the summation avoids numerical overflows.

log[PrAs] =
N
∑

i=1

log

[
∫ xi+ǫ

xi−ǫ

fAs(xi|θAs)dx

]
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Distributions Parameter θ λ = 0.0005 λ = 0.005 λ = 0.05

Alpha-stable

α 4.961760e-01 4.779910e-01 4.845367e-01
β 9.158094e-01 9.144688e-01 1.000000e-00
γ 2.152848e-11 6.521046e-11 1.466723e-10
δ 1.213325e-12 1.542156e-11 -1.711938e-11

Log-normal
m -2.354072e+01 -2.243617e+01 -2.156463e+01
σ 2.449433e+00 2.469530e+00 2.398825e+00

Weibull
ν 2.352524e-10 6.641183e-10 1.585883e-09
k 2.801167e-01 2.913005e-01 3.198153e-01

Table 4.7: Estimated Parameter Values used to Generate Random variable as a
Function of the Distribution of NS-2 result, when ICSTh= 6.25 nW

log[PrLn] =

N
∑

i=1

log

[
∫ xi+ǫ

xi−ǫ

fLn(xi|θLn)dx

]

log[PrWb] =

N
∑

i=1

log

[
∫ xi+ǫ

xi−ǫ

fWb(xi|θWb)dx

]

where N is the number of sample and 0 < ǫ << 1.

Figure 4.12 shows the log probability density of the NS-2 data set by 100 indepen-
dent trials, further, confirms that the Alpha-stable distribution achieves the highest
log probability density value of the NS-2, when λ is 0.05 nodes/m2, and the log-
normal distribution reaches the highest log probability density, when λ are 0.0005
and 0.005 nodes/m2.

Table 4.7 shows the median value of the log probability density of the NS-2 sam-
ple data set over 100 repeated runs, along with the variation of node density. The
Alpha stable and Log-normal distributions are comparable each other to NS-2 data
set, whereas the Weibull distribution is relatively far from the NS-2 data set com-
pared to the others. This observation makes it possible to select a distribution most
similar to the NS-2 data set on the variation of node density.
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Figure 4.12: For probability density values, the red line inside the box denotes the
median, the edge of the box are 25-th and 75-th percentiles, and the whiskers are
extended to the extreme value not considering possible outliers, when ICSTh= 6.25
nW. (a) λ = 0.0005 nodes/m2. (b) λ = 0.005 nodes/m2. (c) λ = 0.05 nodes/m2.

Distributions λ = 0.0005 λ = 0.005 λ = 0.05

Alpha-stable -1.212633e+06 -1.276548e+06 -1.304535e+06
Log-normal -1.207953e+06 -1.262510e+06 -1.307296e+06

Weibull -1.221095e+06 -1.274214e+06 -1.317877e+06

Table 4.8: Median value of Logarithmic probability density of the NS-2 sample data
set over 100 repeated runs, given the set of parameters for Alpha-stable, Log-Normal,
and Weibull distribution, when ICSTh= 6.25 nW



Chapter 5

Conclusions and Future Work

In this chapter we are going to conclude the main results achieved in this thesis.
Most importantly, some possible future research directions based on this thesis are
discussed as well.

5.1 Conclusions

As interference results from the summation of signals issued by concurrent trans-
mitters, it directly depends on the nodes location. Thus, the point process used to
model concurrent nodes location is fundamental in any multi-hop wireless network
research. Assuming the active transmitters are distributed according to a hardcore
process, the PPP with modified density, MPP, and SSI are discussed for CSMA/CA
networks where a busy medium detection depends on the aggregated power from all
concurrent signals.

For very sparse networks, the PPP with modified density, MPP, and SSI, tend to
be similar to the result of PPP, since the PPP does not consider any dependency
between the transmitter location. For denser case, various point processes lead to
different interference distributions. Noticeably, the difference between MPP and SSI
gets large, due to the under-estimated density issue. In the practical interference
distribution itself induced by NS-2, node density variation lead to shift of peak point.

We point out, however, that the interference distributions generated by the var-
ious point processes are significantly different with the practical results by NS-2.
The existence of large gap is mainly due to the assumption that all of the point
process models only consider multiple concurrently active node, whereas in NS-2,
the active node, the probability of medium access of a typical node is not given
a priori and it has to be determined by the CSMA/CA DCF policy. In addition,
Kolmogorov-Smirnov test executed to ensure objective comparison with statistic
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values, result in the rejection of the assumption that interference distributions from
NS-2 and each of point processes are from the same continuous distribution. Even
under consideration of the effective node densities offering the best approximation
to the interference distribution by NS-2, the hypothesis test leads to the rejection
again. However, the statistics of the hypothesis test allow us to confirm that the
CSMA/CA scheme introduces a reasonable transmission probability with RTS/CTS
mode and exponential random backoff scheme, making an effect on effective node
geometry.

Nevertheless, we have observed that all of the interference distributions by NS-2 and
Processes all offer the similar shape which follows a peak and an asymmetry with
a more or less heavy tail depending on each mean and variance. This observation
absolutely contradicts a classical assumption in which the interference is generally
considered to be Gaussian. We show that in the case where some of the interferers
are dominant, the central limit theorem(CLT) is not valid any more, even if the
number of interferers may be large. We further confirm that in a case which gets rid
of dominant interference, the distribution has a tendency similar to the Gaussian
shape.

Besides, this observation has promoted an interest in characterizing the distribu-
tion of the aggregated interference with the Log-normal, Alpha-stable, and Weibull
distributions as a family of heavy tail distributions. Through the fitting plot, the
empirical interference distributions by NS-2 are approximated by the Alpha stable
and Log-normal distribution for the different densities of nodes. However, the χ2

and Kolmogorov-Smirnov tests have mostly led to the reject of the null assumption
that the interference result by NS-2 is a random sample from the Alpha-stable, Log-
Normal, or Weibull distribution with estimated parameters except for the Alpha-
stable distribution in high node density. The hypothesis statistics from these tests
systematically yield agreement on the choice of the better approximation. Addition-
ally, the log probability process with several iterations certainly makes it possible to
more reliably select a distribution among the considered 3 kind of the heavy tailed
distributions most similar to the NS-2 data set on the variation of node density.
This approximation provides the opportunity to analytically study and characterize
values such as SINR which is used to specify and ultimately compute the connec-
tivity/coverage and the capacity/throughput.

5.2 Possible Future Work

Interesting research topics about spatial model based on stochastic geometry for
interference are below

• to build a more realistic modelling to consider the concurrently transmitting
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node density without pre-assumption which most of point processes should
employ. In order to make it possible, we are able to begin with transmission
probability Biancchi introduced for MAC performance measurement.

• to derive new distribution closest to practical interference or find some trend of
parameters representing for theoretical distribution along with various factors
such as density, CS range, RTS/CTS usage, or channel parameters.

• to apply this spatial model for interference to different type of wireless networks
such as Cognitive radio and Femtocells as well as Ad hoc networks. When it
comes to Cognitive Radio, a primary consideration of a cognitive radio is the
likelihood of interfering with a primary. The probability of this occurring must
be held small, and it clearly depends on the spatial density and the typically
unknown locations of the primary receivers. Stochastic geometry provides an
essential toolkit for understanding femtocell deployments. A natural model
for two-tier networks consisting of tier 1 base stations and tier 2 femtocells is
to model the femtocell locations as a point process of density lf overlaying a
regular grid of base stations.
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Appendix A

Matlab Codes

A.1 Main.m

This file illustrates main process.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Main PGM %%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all
close all
clc
max_iter=50000;
node= [16 158 1571];
checkbox_iteration = 100;

r=20;
R=100;
mu =1000;
P=0.001; % W

seq_total=[ 'R' int2str(R) '-' 'r' int2str(r) '-' 'n' int2str(node(1)) '
-' int2str(node(2)) '-' int2str(node(3)) '-Density-' ];

for k=1:size(node,2)
n= node(k);
density = n/(pi * 100^2);
lambda= n/(pi * (R^2));
lambda_new = (1-exp(-lambda * pi * r^2))/(pi * r^2);
ppp_new_n_ceil = ceil(lambda_new * (pi * (R^2)));
ppp_new_n_floor = floor(lambda_new * (pi * (R^2)));
seq=[ 'R' int2str(R) '-' 'r' int2str(r) '-' 'n' int2str(n) '-Density-' ]

%%%%%%%%%%%%%%%% Read and save Empirical result %%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% NS2 %%%%%%%%%%%%%%%%%
filename0 = [ 'Den-' int2str(n) '-' int2str(r) '-SINR.dat' ];
fid0 = fopen(filename0);
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Total_interference_data = textscan(fid0, '%f' );
fclose(fid0);
Total_interference = Total_interference_data{1};
sort_inf=sort(Total_interference, 'ascend' );
index = find(sort_inf ≤0.000);
interf= (sort_inf(size(index)+1: end ) * (10^(-12)));
min_x = log10(min(interf));
max_x = log10(max(interf));
interval = min_x:0.05:max_x;
x= 10.^interval;

%%%%%%%%%%%%%%%%%%% Theoretical closed form %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% PPP & Modified_PPP %%%%%%%%%%%%%%%
% PPP
ppp_theo=erfc((lambda * pi^2) ./ (4 * sqrt(mu * ppp_theo_x)));
ppp_theo_cdf_hist_percent = ppp_theo;
ppp_theo(2: end) = ppp_theo(2: end) - ppp_theo(1: end -1);
ppp_theo_pdf_hist_percent = ppp_theo;
% PPPmd
ppp_modified_theo=erfc((lambda_new * pi^2) ./ ...

(4 * sqrt(mu * ppp_theo_x)));
ppp_modified_theo_cdf_hist_percent = ppp_modified_the o;
ppp_modified_theo(2: end ) = ppp_modified_theo(2: end ) - ...

ppp_modified_theo(1: end-1);
ppp_modified_theo_pdf_hist_percent = ppp_modified_the o;

%%%%%%%%%%%%%%%%%%% Simulation %%%%%%%
%%%%%%%%%%%%%%%%%%% PPP & PPPmd & Matern & SSI %%%%%%%
ppp_interf = [];
ppp_new_interf_ceil = [];
ppp_new_interf_floor = [];
matern_interf = [];
ssi_interf = [];
for a=1:max_iter

%%%%%%%%%%%%%%%%%% Node distribution %%%%%%%%%%%%%%%%%%
% PPP
ppp_theta=rand(1,n) * 2* pi;
ppp_dist=R * sqrt(rand(1,n));
ppp_mother_node=[ppp_theta;ppp_dist];
% PPPmd_ceil
ppp_new_theta_ceil=rand(1,ppp_new_n_ceil) * 2* pi;
ppp_new_dist_ceil=R * sqrt(rand(1,ppp_new_n_ceil));
ppp_new_mother_node_ceil= ...

[ppp_new_theta_ceil;ppp_new_dist_ceil];
% PPPmd_floor
ppp_new_theta_floor=rand(1,ppp_new_n_floor) * 2* pi;
ppp_new_dist_floor=R * sqrt(rand(1,ppp_new_n_floor));
ppp_new_mother_node_floor= ...

[ppp_new_theta_floor;ppp_new_dist_floor];
% Matern
theta=rand(1,n) * 2* pi;
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dist=R * sqrt(rand(1,n));
mother_node=[theta;dist];
matern_selec=mother_node(:,1);
matern_counter_node=mother_node(:,1);
for i=2:n

matern_fail=sum(sqrt(dist(i)^2+ ...
matern_counter_node(2,:).^2- ...

2* dist(i). * matern_counter_node(2,:). * ...
cos(theta(i)-matern_counter_node(1,:)))<r);

if matern_fail==0;
matern_selec=[matern_selec,mother_node(:,i)];

end
matern_counter_node= ...

[matern_counter_node,mother_node(:,i)];
end
%SSI
ssi_selec=mother_node(:,1);
for i=2:1:n

ssi_fail=sum(sqrt(dist(i)^2+ssi_selec(2,:).^2- ...
2* dist(i). * ssi_selec(2,:). * ...
cos(theta(i)-ssi_selec(1,:)))<r);

if ssi_fail==0;
ssi_selec=[ssi_selec,mother_node(:,i)];

end
end

%%%%%%%%%%%%%%%%%% Channel model %%%%%%%%%%%%%%%%%%
% PPP
ppp_X=-log(1-rand(1,size(ppp_mother_node,2)));
ppp_l=P * ppp_X. * min(1,ppp_mother_node(2,:).^(-4));
ppp_interf = [ppp_interf sum(ppp_l)];
% PPPmd_ceil
ppp_new_X_ceil= ...
-log(1-rand(1,size(ppp_new_mother_node_ceil,2)));
ppp_new_l_ceil= ...
P* ppp_new_X_ceil. * min(1,ppp_new_mother_node_ceil(2,:).^(-4));
ppp_new_interf_ceil = ...
[ppp_new_interf_ceil sum(ppp_new_l_ceil)];
% PPPmd_floor
ppp_new_X_floor= ...
-log(1-rand(1,size(ppp_new_mother_node_floor,2)));
ppp_new_l_floor= P * ppp_new_X_floor. * min(1,

ppp_new_mother_node_floor(2,:).^(-4));
ppp_new_interf_floor = [ppp_new_interf_floor sum(

ppp_new_l_floor)];
% Matern
matern_X=-log(1-rand(1,size(matern_selec,2)));
matern_l=P * matern_X. * min(1,matern_selec(2,:).^(-4));
matern_interf = [matern_interf sum(matern_l)];
% SSI
ssi_X=-log(1-rand(1,size(ssi_selec,2)));
ssi_l=P * ssi_X. * min(1,ssi_selec(2,:).^(-4));
ssi_interf = [ssi_interf sum(ssi_l)];
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%%%%%%%%%%%%%%%%%% Erase memory %%%%%%%%%%%%%%%%%%
clear ppp_theta ppp_dist ppp_mother_node;
clear ppp_new_theta ppp_new_dist;
clear ppp_new_mother_node ppp_new_theta_floor;
clear ppp_new_dist_floor;
clear ppp_new_mother_node_floor ppp_X ppp_l;
clear ppp_new_X ppp_new_l;
clear ppp_new_X_floor ppp_new_l_floor;
clear theta dist mother_node i;
clear matern_selec clear matern_fail;
clear matern_X matern_l;
clear ssi_selec ssi_fail ssi_X ssi_l;

end

%%%%%%%%%%%%%%%%%%% PDF and CDF %%%%
%%%%%%%%%%%%%%%%%%% NS2 & PPP & PPPmd & Matern & SSI %%%%
% NS2
pdf_hist = histc(interf,x);
pdf_hist_sum = max(cumsum(pdf_hist));
pdf_hist_percent = pdf_hist / pdf_hist_sum;
cdf_hist_percent = (cumsum(pdf_hist)/ pdf_hist_sum);
ppp_theo_interval = interval;
ppp_theo_x= x;
extrapolation( 'ns2' ,interf, R, r, n,max_iter );
% PPP
ppp_pdf_hist = histc(ppp_interf,x);
ppp_pdf_hist_cumsum = cumsum(ppp_pdf_hist);
ppp_pdf_hist_sum = max(ppp_pdf_hist_cumsum);
ppp_pdf_hist_percent = ppp_pdf_hist/ppp_pdf_hist_sum;
ppp_cdf_hist = cumsum(ppp_pdf_hist);
ppp_cdf_hist_max = max(ppp_cdf_hist);
ppp_cdf_hist_percent = (ppp_cdf_hist/ppp_cdf_hist_max );
% PPPmd_ceil
ppp_new_pdf_hist_ceil = histc(ppp_new_interf_ceil,x);
ppp_new_pdf_hist_cumsum_ceil = cumsum(ppp_new_pdf_his t_ceil);
ppp_new_pdf_hist_sum_ceil = max(ppp_new_pdf_hist_cums um_ceil);
ppp_new_pdf_hist_percent_ceil = ppp_new_pdf_hist_ceil /

ppp_new_pdf_hist_sum_ceil;
ppp_new_cdf_hist_ceil = cumsum(ppp_new_pdf_hist_ceil) ;
ppp_new_cdf_hist_max_ceil = max(ppp_new_cdf_hist_ceil );
ppp_new_cdf_hist_percent_ceil = (ppp_new_cdf_hist_cei l/

ppp_new_cdf_hist_max_ceil);
% PPPmd_floor
ppp_new_pdf_hist_floor = histc(ppp_new_interf_floor,x );
ppp_new_pdf_hist_cumsum_floor = cumsum(ppp_new_pdf_hi st_floor);
ppp_new_pdf_hist_sum_floor = max(ppp_new_pdf_hist_cum sum_floor);
ppp_new_pdf_hist_percent_floor = ppp_new_pdf_hist_flo or/

ppp_new_pdf_hist_sum_floor;
ppp_new_cdf_hist_floor = cumsum(ppp_new_pdf_hist_floo r);
ppp_new_cdf_hist_max_floor = max(ppp_new_cdf_hist_flo or);
ppp_new_cdf_hist_percent_floor = ppp_new_cdf_hist_flo or/

ppp_new_cdf_hist_max_floor;
% matern
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matern_pdf_hist = histc(matern_interf,x);
matern_pdf_hist_cumsum = cumsum(matern_pdf_hist);
matern_pdf_hist_sum = max(matern_pdf_hist_cumsum);
matern_pdf_hist_percent = matern_pdf_hist/matern_pdf_ hist_sum;
matern_cdf_hist = cumsum(matern_pdf_hist);
matern_cdf_hist_max = max(matern_cdf_hist);
matern_cdf_hist_percent = (matern_cdf_hist/matern_cdf _hist_max);
% ssi
ssi_pdf_hist = histc(ssi_interf,x);
ssi_pdf_hist_cumsum = cumsum(ssi_pdf_hist);
ssi_pdf_hist_sum = max(ssi_pdf_hist_cumsum);
ssi_pdf_hist_percent = ssi_pdf_hist/ssi_pdf_hist_sum;
ssi_cdf_hist = cumsum(ssi_pdf_hist);
ssi_cdf_hist_max = max(ssi_cdf_hist);
ssi_cdf_hist_percent = (ssi_cdf_hist/ssi_cdf_hist_max );

%%%%%%%%%%%%%%% Kolmogorov-Smirnov Test %%%%%
%%%%%%%%%%%%%%% NS2 vs (PPP || PPPmd || Matern || SSI) %%%%%
[h1,p1,k1]=kstest2(interf, ppp_interf);
[h2,p2,k2]=kstest2(interf, ppp_new_interf_ceil);
[h3,p3,k3]=kstest2(interf, matern_interf);
[h4,p4,k4]=kstest2(interf, ssi_interf);
PP = [ 'R' int2str(R) '-r' int2str(r) '-n' int2str(n) '-Static-

kstest' ];
filename0=[ PP '-ns2-process.txt' ];
fid = fopen(filename0, 'wt' );
fprintf(fid, filename0);
fprintf(fid, '\nns2 vs ppp h= %d\n' , h1);
fprintf(fid, 'ns2 vs ppp p= %d\n' , p1);
fprintf(fid, 'ns2 vs ppp k= %d\n' , k1);
fprintf(fid, 'ns2 vs cm h= %d\n' , h2);
fprintf(fid, 'ns2 vs cm p= %d\n' , p2);
fprintf(fid, 'ns2 vs cm k= %d\n' , k2);
fprintf(fid, 'ns2 vs tm h= %d\n' , h3);
fprintf(fid, 'ns2 vs tm p= %d\n' , p3);
fprintf(fid, 'ns2 vs tm k= %d\n' , k3);
fprintf(fid, 'ns2 vs ssi h= %d\n' , h4);
fprintf(fid, 'ns2 vs ssi p= %d\n' , p4);
fprintf(fid, 'ns2 vs ssi k= %d\n' , k4);
fclose(fid);

%%%%%%%%%%%%%%% Extrapolation process %%%%%
%%%%%%%%%%%%%%% NS2 vs heavy tailed distribution %%%%%
extrapolation(checkbox_iteration, interf,max_iter,R, r, n);

%%%%%%%%%%%%%%% Figure generation %%%%%
%%%%%%%%%%%%%%% PDF & CDF %%%%%
% Set filename to save figures into * .fig files
filename1=[ seq 'PDF-Normscale-Process' ];
filename2=[ seq 'CDF-Logscale-Process' ];
filename3=[ seq 'PDF-Normscale-Process-ns2' ];
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filename4=[ seq 'CDF-Logscale-Process-ns2' ];
filename5=[ seq_total 'PDF-Normscale' ];
filename6=[ seq_total 'CDF-Logscale' ];
fignumber1= (n)+1;
fignumber2= (n)+2;
fignumber3= (n)+3;
fignumber4= (n)+4;

% PDF-Normscale for Comparison among Processes)
fig1=figure(fignumber1);
plot(x,ppp_pdf_hist_percent, '--' , 'Color' ,[0 0 1], 'LineWidth' ,2);
hold on;
plot(x,ppp_new_pdf_hist_percent_ceil, '-' , 'Color' ,[0 .5 0], '

LineWidth' ,2);
hold on;
plot(x,matern_pdf_hist_percent, '-.' , 'Color' ,[1 0 0], 'LineWidth' ,2);
hold on;
plot(x,ssi_pdf_hist_percent, ':' , 'Color' ,[0 0 0] , 'LineWidth' ,2);
legend( 'PPP' , 'PPPmd' , 'MPP' , 'SSI' , 'Location' , 'NorthEast' );
grid off;
xlim([min(x) (1 * 10^(-8))]);
xlabel( 'Power(W) on Normal Scale' );
ylabel( 'Probability Density Function' );
saveas(fig1,filename1, 'fig' );

% CDF-Logscale for Comparison among Processes)
fig2=figure(fignumber2);
semilogx(x,ppp_cdf_hist_percent , '--' , 'Color' ,[0 0 1], 'LineWidth'

,2);
hold on;
semilogx(x,ppp_new_cdf_hist_percent_ceil, '-' , 'Color' ,[0 .5 0], '

LineWidth' ,2);
hold on;
semilogx(x,matern_cdf_hist_percent, '-.' , 'Color' ,[1 0 0], 'LineWidth'

,2);
hold on;
semilogx(x,ssi_cdf_hist_percent, ':' , 'Color' ,[0 0 0] , 'LineWidth'

,2);
legend( 'PPP' , 'PPPmd' , 'MPP' , 'SSI' , 'Location' , 'NorthWest' );
xlim([10^(-11) 10^(-4)]);
xlabel( 'Power(W) on Log Scale' );
ylabel( 'Cummulative Distribution Function' );
grid off;
saveas(fig2,filename2, 'fig' );

% PDF-Normscale for Comparison among NS2 and Processes
fig3=figure(fignumber3);
plot(x,pdf_hist_percent , 'o' , 'Color' ,[0 0 0], 'LineWidth' ,2);
hold on;
plot(x,ppp_pdf_hist_percent, '--' , 'Color' ,[0 0 1], 'LineWidth' ,2);
hold on;
plot(x,ppp_new_pdf_hist_percent_ceil, '-' , 'Color' ,[0 .5 0], '

LineWidth' ,2);
hold on;
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plot(x,matern_pdf_hist_percent, '-.' , 'Color' ,[1 0 0], 'LineWidth' ,2);
hold on;
plot(x,ssi_pdf_hist_percent, ':' , 'Color' ,[0 0 0] , 'LineWidth' ,2);
legend( 'NS2' , 'PPP' , 'PPPmd' , 'MPP' , 'SSI' , 'Location' , 'NorthEast' );
grid off;
xlim([min(x) (1 * 10^(-8))]);
xlabel( 'Power(W) on Normal Scale' );
ylabel( 'Probability Density Function' );
saveas(fig3,filename3, 'fig' );

% CDF-Logscale for Comparison among NS2 and Processes
fig4=figure(fignumber4);
semilogx(x,cdf_hist_percent, 'o' , 'Color' ,[0 0 0], 'LineWidth' ,2);
hold on;
semilogx(x,ppp_cdf_hist_percent, '--' , 'Color' ,[0 0 1], 'LineWidth'

,2);
hold on;
semilogx(x,ppp_new_cdf_hist_percent_ceil, '-' , 'Color' ,[0 .5 0], '

LineWidth' ,2);
hold on;
semilogx(x,matern_cdf_hist_percent, '-.' , 'Color' ,[1 0 0], 'LineWidth'

,2);
hold on;
semilogx(x,ssi_cdf_hist_percent, ':' , 'Color' ,[0 0 0] , 'LineWidth'

,2);
legend( 'NS2' , 'PPP' , 'PPPmd' , 'MPP' , 'SSI' , 'Location' , 'NorthEast' );
xlim([10^(-11) 10^(-4)]);
xlabel( 'Power(W) on Log Scale' );
ylabel( 'Cummulative Distribution Function' );
grid off;
saveas(fig4,filename4, 'fig' );

% PDF-Normcale for Different densities
fig5=figure(5);
if k==1

plot(x,pdf_hist_percent, '--' , 'Color' ,[0 0 1], 'LineWidth' ,2);
hold on;

elseif k==2
plot(x,pdf_hist_percent, '-' , 'Color' ,[1 0 0], 'LineWidth' ,2);
hold on;

else
plot(x,pdf_hist_percent, ':' , 'Color' ,[0 0 0], 'LineWidth' ,2);
hold on;

end
legend( '\lambda=0.0005' , '\lambda=0.005' , '\lambda=0.05' );
xlim([min(x) (1 * 10^(-9))]);
xlabel( 'Power(W) on Normal Scale' );
ylabel( 'Probability Density Function' );
grid off;
saveas(fig5,filename5, 'fig' );

% CDF-Normcale for Different densities
fig6=figure(6);
if k==1
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semilogx(x,cdf_hist_percent, '--' , 'Color' ,[0 0 1], 'LineWidth'
,2);

hold on;
elseif k==2

semilogx(x,cdf_hist_percent, '-' , 'Color' ,[1 0 0], 'LineWidth' ,2)
;

hold on;
else

semilogx(x,cdf_hist_percent, ':' , 'Color' ,[0 0 0], 'LineWidth' ,2)
;

hold on;
end
xlim([10^(-13) 10^(-4)]);
legend( '\lambda=0.0005' , '\lambda=0.005' , '\lambda=0.05' );
xlabel( 'Power(W) on Log Scale' );
ylabel( 'Cummulative Distribution Function' );
grid off;
saveas(fig6,filename6, 'fig' );

end % End for k=1:size(node,2)
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A.2 Extrapolation2.m

This file illustrates extrapolation process.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Extrapolation Process %%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function extrapolation(checkbox_iteration, long_interf, max_it er,R, r,

n)

epsilon = 1e-20;

%%%%%%%%%%%%%%%%%%% Check box generation %%%%%%
%%%%%%%%%%%%%%%%% heavy tailed distribution %%%%%%
for j=1 : checkbox_iteration

% Sampling 50000 * 2
sampling_index = randsample(length(long_interf), max_i ter * 2);
interf = long_interf(sampling_index(1:max_iter));
interf_fitting = long_interf(sampling_index(max_iter+ 1: end));

% Estimate parameters for each distribution with raw data
wbl(j,:) =wblfit(interf_fitting);
p(j,:) = stblfit(interf_fitting, 'ecf' ,statset( 'Display' , 'iter'

))';
parmhat(j,:)= lognfit(interf_fitting);
[muhat,sigmahat] = normfit(interf_fitting);

% PDF for Alpha-stable fit
alpha_x1 = stblcdf(interf + epsilon, p(j,1),p(j,2),p(j,3 ),p(j,4)

);
alpha_x2 = stblcdf(interf - epsilon, p(j,1),p(j,2),p(j,3 ),p(j,4)

);
probs_alpha = max(alpha_x1 - alpha_x2, 0);

% PDF for Log-normal fit
logn_x1 = logncdf(interf+ epsilon ,parmhat(j,1),parmhat (j,2));
logn_x2 = logncdf(interf- epsilon ,parmhat(j,1),parmhat (j,2));
probs_logn = max(logn_x1-logn_x2, 0);

% PDF for Weibull fit
wbl_x1 = wblcdf(interf+ epsilon, wbl(j,1),wbl(j,2));
wbl_x2 = wblcdf(interf- epsilon, wbl(j,1),wbl(j,2));
probs_wbl = max(wbl_x1- wbl_x2, 0);
probs_alpha( probs_alpha == 0) = 1e-20;
probs_logn( probs_logn == 0) = 1e-20;
probs_wbl( probs_wbl == 0) = 1e-20;

% Summation to avoid numerical overflows
Prob_ML_alpha(j,1) =(sum(log(probs_alpha)));
Prob_ML_logn(j,1) =(sum(log(probs_logn)));
Prob_ML_wbl(j,1) =(sum(log(probs_wbl)));
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% Save the variables
savevars.wbl(j,:) = wbl(j,:);
savevars.p(j,:) = p(j,:);
savevars.parmhat(j,:) = parmhat(j,:);
savevars.Prob_alpha(j) = Prob_ML_alpha(j);
savevars.Prob_logn(j) = Prob_ML_logn(j);
savevars.Prob_wbl(j) = Prob_ML_wbl(j);

end

%%%%%%%%%%%%%%%%%%% Chi-square2 %%%%%%
%%%%%%%%%%%%%%%%% heavy tailed distribution %%%%%%

% Set for Chi-square goodness of fit test
X = sort(interf, 'descend' );
n_samples = size(X,1);
max_bins = 10;
Alpha_min_bin_items = max_iter/max_bins;
Log_min_bin_items = max_iter/max_bins;
Wbl_min_bin_items = max_iter/max_bins;

% Alpha-stable
Alpha_cdf_func = {@stblcdf, p(j,1),p(j,2),p(j,3),p(j,4 )};
Alpha_adj_edges = [];
Alpha_curr_items = [];
Alpha_bin_sz = [];
Alpha_cdf_bin_sz = [];
for i=1:n_samples

Alpha_curr_items = [Alpha_curr_items X(i)];
if (length(Alpha_curr_items) ≥ Alpha_min_bin_items)

Alpha_cdf_item_count = n_samples * ...
Alpha_cdf_func{1}(Alpha_curr_items(1), Alpha_cdf_fun c{2: end}) -

...
Alpha_cdf_func{1}(Alpha_curr_items( end), Alpha_cdf_func{2: end}))

;
if (Alpha_cdf_item_count > 5)

Alpha_adj_edges = [(Alpha_curr_items( end ) - 1e-50)
Alpha_adj_edges ];

Alpha_bin_sz = [length(Alpha_curr_items) Alpha_bin_sz] ;
Alpha_cdf_bin_sz = [Alpha_cdf_item_count Alpha_cdf_bin _sz];
Alpha_curr_items = [];
if (length(Alpha_adj_edges) ≥ max_bins - 1)

break ;
end

end
end
if (mod(i, 50000) == 0)

fprintf(2, '%d\n' , i);
end

end
Alpha_adj_edges1 = [min(X) Alpha_adj_edges max(X)];
[h1,p1,st1]=chi2gof(interf, 'cdf' ,Alpha_cdf_func, 'edges' ,

Alpha_adj_edges1);

% Log-normal
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Log_cdf_func = {@logncdf, parmhat(j,1), parmhat(j,2)};
Log_adj_edges = [];
Log_curr_items = [];
Log_bin_sz = [];
Log_cdf_bin_sz = [];
for i=1:n_samples

Log_curr_items = [Log_curr_items X(i)];
if (length(Log_curr_items) ≥ Log_min_bin_items)

Log_cdf_item_count = n_samples * ...
(Log_cdf_func{1}(Log_curr_items(1), Log_cdf_func{2: end }) -

...
Log_cdf_func{1}(Log_curr_items( end), Log_cdf_func{2: end}))

;
if (Log_cdf_item_count > 5)

Log_adj_edges = [(Log_curr_items( end) - 1e-50) Log_adj_edges
];

Log_bin_sz = [length(Log_curr_items) Log_bin_sz];
Log_cdf_bin_sz = [Log_cdf_item_count Log_cdf_bin_sz];
Log_curr_items = [];

if (length(Log_adj_edges) ≥ max_bins - 1)
break ;

end
end

end
if (mod(i, 50000) == 0)

fprintf(2, '%d\n' , i);
end

end
Log_adj_edges1 = [min(X) Log_adj_edges max(X)];
[h2,p2,st2]=chi2gof(interf, 'cdf' ,Log_cdf_func, 'edges' , Log_adj_edges1)

;

% Weibull
Wbl_cdf_func = {@wblcdf, wbl(j,1),wbl(j,2)};
Wbl_adj_edges = [];
Wbl_curr_items = [];
Wbl_bin_sz = [];
Wbl_cdf_bin_sz = [];
for i=1:n_samples

Wbl_curr_items = [Wbl_curr_items X(i)];
if (length(Wbl_curr_items) ≥ Wbl_min_bin_items)

Wbl_cdf_item_count = n_samples * ...
(Wbl_cdf_func{1}(Wbl_curr_items(1), Wbl_cdf_func{2: end }) -

...
Wbl_cdf_func{1}(Wbl_curr_items( end), Wbl_cdf_func{2: end}))

;
if (Wbl_cdf_item_count > 5)

Wbl_adj_edges = [(Wbl_curr_items( end) - 1e-50) Wbl_adj_edges
];

Wbl_bin_sz = [length(Wbl_curr_items) Wbl_bin_sz];
Wbl_cdf_bin_sz = [Wbl_cdf_item_count Wbl_cdf_bin_sz];
Wbl_curr_items = [];
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if (length(Wbl_adj_edges) ≥ max_bins - 1)
break ;

end
end

end
if (mod(i, 50000) == 0)

fprintf(2, '%d\n' , i);
end

end
Wbl_adj_edges1 = [min(X) Wbl_adj_edges max(X)];
[h3,p3,st3]=chi2gof(interf, 'cdf' ,Wbl_cdf_func, 'edges' , Wbl_adj_edges1)

;

%%%%%%%%%%%%%%%%% Kolmogorov-Smirnov Test %%%%%%
%%%%%%%%%%%%%%%%% heavy tailed distribution %%%%%%

min_x = log10(min(X));
max_x = log10(max(X));
interval = min_x:0.1:max_x;
x= 10.^interval;

% NS2
pdf_hist = histc(interf,x);
pdf_hist_cumsum = cumsum(pdf_hist);
pdf_hist_sum = max(pdf_hist_cumsum);
pdf_hist_percent = pdf_hist/pdf_hist_sum;
cdf_hist = cumsum(pdf_hist);
cdf_hist_max = max(cdf_hist);
cdf_hist_percent = cdf_hist/cdf_hist_max;

% Alpha Stable
alphacdf_x=stblcdf(x,p(j,1),p(j,2),p(j,3),p(j,4));
alphapdf_x=zeros(1,size(x,2));
alphapdf_x(2: end ) = alphacdf_x(2: end) - alphacdf_x(1: end-1);
uniform_alpha_inverse = alphacdf_x(1) + ...

(alphacdf_x( end ) - alphacdf_x(1)). * rand(max_iter
,1);

sample_alpha_cdf = sort(uniform_alpha_inverse, 'ascend' );
sample_alpha = stblinv(sample_alpha_cdf,p(j,1),p(j,2) ,p(j,3),p(j,4));
[h22,p22,k22]=kstest2(interf, sample_alpha);

% Lognormal
logncdf_x = logncdf(x,parmhat(j,1),(parmhat(j,2)));
lognpdf_x = zeros(1,size(x,2));
lognpdf_x(2: end) = logncdf_x(2: end) - logncdf_x(1: end -1);
uniform_logn_inverse = logncdf_x(1) + ...

(logncdf_x( end ) - logncdf_x(1)). * rand(max_iter
,1);

sample_logn_cdf = sort(uniform_logn_inverse, 'ascend' );
sample_logn = logninv(sample_logn_cdf,parmhat(j,1),(p armhat(j,2)));
[h33,p33,k33]=kstest2(interf, sample_logn);

% Weibull
weicdf_x = wblcdf(x,wbl(j,1),wbl(j,2));
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weipdf_x = zeros(1,size(x,2));
weipdf_x(2: end) = weicdf_x(2: end ) - weicdf_x(1: end-1);
uniform_wei_inverse = weicdf_x(1) + ...

(weicdf_x( end) - weicdf_x(1)). * rand(max_iter
,1);

sample_wei_cdf = sort(uniform_wei_inverse, 'ascend' );
sample_wei = wblinv(sample_wei_cdf,wbl(j,1),wbl(j,2)) ;
[h44,p44,k44]=kstest2(interf, sample_wei);

%%%%%%%%%%%%%%% Figure generation %%%%%%
%%%%%%%%%%%%%%% Box plot and histogram %%%%%%

% Box Plot Generation
PP3 = [ 'R' int2str(R) '-' 'r' int2str(r) '-' 'n' int2str(n) ];
filename3=[ PP3 '-logarithmic-Boxplot' ];
fig1=figure(1);
boxplot([Prob_ML_alpha Prob_ML_logn Prob_ML_wbl], 'labels' , ...

{ 'Alpha-stable' , 'Log-normal' , 'Weibull
' });

ylabel( 'Log-probability' );
saveas(fig1,filename3, 'fig' );

% NS2 raw data bar plot
X = interf_fitting;
min_x = log10(min(X));
max_x = log10(max(X));
interval = min_x:0.05:max_x;
x= 10.^interval;
x2 = zeros(1,size(x,2) * 4-1);
x2(1) = x(1);
x3 = x(1);
for l=2:size(x,2)

x2(4 * (l-1)) = (x(l) + x(l-1))/2;
x2(4 * (l-1)+1) = (x(l) + x(l-1))/2;
x2(4 * (l-1)+2) = x(l);
x2(4 * (l-1)+3) = x(l);
x3 = [x3 x(l)];

end
x3( end ) = [];
x3(1) = [];
pdf_hist = histc(X,x);
pdf_hist_cumsum = cumsum(pdf_hist);
pdf_hist_sum = max(pdf_hist_cumsum);
pdf_hist_percent = pdf_hist/pdf_hist_sum;
cdf_hist = cumsum(pdf_hist);
cdf_hist_max = max(cdf_hist);
cdf_hist_percent = cdf_hist/cdf_hist_max;
pdf_hist2 = zeros(size(pdf_hist_percent,1) * 4-1,1);
pdf_hist3 = [];
for l=1:size(pdf_hist_percent,1)-1

pdf_hist2(4 * (l-1)+1) = pdf_hist_percent(l);
pdf_hist2(4 * (l-1)+2) = pdf_hist_percent(l);
pdf_hist2(4 * (l-1)+3) = pdf_hist_percent(l+1);
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pdf_hist2(4 * (l-1)+4) = pdf_hist_percent(l+1);
pdf_hist3 = [pdf_hist3 pdf_hist_percent(l)];

end
pdf_hist3(1) =[];

% Alpha stable fit
alphacdf_x=stblcdf(x,p(j,1),p(j,2),p(j,3),p(j,4));
alphapdf_x=zeros(1,size(x,2));
alphapdf_x(2: end ) = alphacdf_x(2: end) - alphacdf_x(1: end-1);
% Lognormal fit
logncdf_x = logncdf(x,parmhat(j,1),parmhat(j,2));
lognpdf_x = zeros(1,size(x,2));
lognpdf_x(2: end) = logncdf_x(2: end) - logncdf_x(1: end -1);
% Weibull fit
weicdf_x = wblcdf(x,wbl(j,1),wbl(j,2));
weipdf_x = zeros(1,size(x,2));
weipdf_x(2: end) = weicdf_x(2: end ) - weicdf_x(1: end-1);

% Plot Generation
filename10 = [ PP3 '-plot-Norm-ns2-alpha-logn-weibull' ];
filename20 = [ PP3 '-plot-Log-ns2-alpha-logn-weibull' ];
fignumber=20+n;
fig20=figure(fignumber);
l1=semilogx(x,alphapdf_x , '-+' , 'Color' ,[0 0 1], 'LineWidth' ,1);

hold on;
l2=semilogx(x,lognpdf_x , '- * ' , 'Color' ,[1 0 0], 'LineWidth' ,1);

hold on;
l3=semilogx(x,weipdf_x , '-x' , 'Color' ,[0 1 0], 'LineWidth' ,1);

hold on;
l4=semilogx(x2,pdf_hist2, 'k-' );hold on;
l4=bar(x3,pdf_hist3,0);hold on;
set(l4, 'FaceColor' ,[1 1 1]);
legend([l1 l2 l3 l4], { 'alpha-stable' , 'log-normal' , 'weibull' , 'ns2' });
xlim([min(X)+1e-13 max(X)-1e-13]);
xlabel( 'Interference Power(W) on Log Scale' );
ylabel( 'Probability Density Function' );
grid off;
saveas(fig20,filename20, 'fig' );
hold off;

%%%%%%%%%%%%%%% data file generation %%%%%%
%%%%%%%%%%%%%%% chi2test and kstest2 %%%%%%
PP2 = [ 'R' int2str(R) '-' 'r' int2str(r) '-' 'n' int2str(n) '-Chi2+

KStest-' ];
filename1=[ PP2 'NS2-Alpha+Logn+Wbl.txt' ];
fid = fopen(filename1, 'wt' );
fprintf(fid, filename1);

fprintf(fid, '\n

*************************************************** ***** ' );
fprintf(fid, '\n

*************************************************** ***** ' );
fprintf(fid, '\n

*************************************************** ***** ' );
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fprintf(fid, '\n ********** NS2 and Distributions chi2test

************* ' );
fprintf(fid, '\n\n *** NS2 and Alpha chi2test *** \n' );
fprintf(fid, 'sample size %d\n' , max_iter);
fprintf(fid, 'result %d\n' , h1);
fprintf(fid, 'p-value %d\n' , p1);
fprintf(fid, 'chi2statistic %d\n' , st1.chi2stat);
fprintf(fid, 'degreefreedom %d' , st1.df);
fprintf(fid, '\nedges ' );
fprintf(fid, '%d ' , st1.edges);
fprintf(fid, '\nalpha observe ' );
fprintf(fid, '%d ' , st1.O);
fprintf(fid, '\nalpha estimation ' );
fprintf(fid, '%d ' , st1.E);
fprintf(fid, '\nalpha-stable parameters_1: %d ' , p(:,1));
fprintf(fid, '\nalpha-stable parameters_2: %d ' , p(:,2));
fprintf(fid, '\nalpha-stable parameters_3: %d ' , p(:,3));
fprintf(fid, '\nalpha-stable parameters_4: %d ' , p(:,4));

fprintf(fid, '\n\n *** NS2 and Logn chi2test *** \n' );
fprintf(fid, 'sample size %d\n' , max_iter);
fprintf(fid, 'result %d\n' , h2);
fprintf(fid, 'p-value %d\n' , p2);
fprintf(fid, 'chi2statistic %d\n' , st2.chi2stat);
fprintf(fid, 'degreefreedom %d' , st2.df);
fprintf(fid, '\nedges ' );
fprintf(fid, '%d ' , st2.edges);
fprintf(fid, '\nLogNormal observe ' );
fprintf(fid, '%d ' , st2.O);
fprintf(fid, '\nLogNormal estimation ' );
fprintf(fid, '%d ' , st2.E);
fprintf(fid, '\nLog-normal parameters_1: %d ' , parmhat(:,1));
fprintf(fid, '\nLog-normal parameters_2: %d ' , parmhat(:,2));

fprintf(fid, '\n\n *** NS2 and Wbl chi2test *** \n' );
fprintf(fid, 'sample size %d\n' , max_iter);
fprintf(fid, 'result %d\n' , h3);
fprintf(fid, 'p-value %d\n' , p3);
fprintf(fid, 'chi2statistic %d\n' , st3.chi2stat);
fprintf(fid, 'degreefreedom %d' , st3.df);
fprintf(fid, '\nedges ' );
fprintf(fid, '%d ' , st3.edges);
fprintf(fid, '\nWeibull observe ' );
fprintf(fid, '%d ' , st3.O);
fprintf(fid, '\nWeibull estimation ' );
fprintf(fid, '%d ' , st3.E);
fprintf(fid, '\nWeibull parameters: %d %d ' , wbl(1),wbl(2));
fprintf(fid, '\nWeibull parameters_1: %d ' , wbl(:,1));
fprintf(fid, '\nWeibull parameters_2: %d ' , wbl(:,2));

fprintf(fid, '\n

*************************************************** ***** ' );
fprintf(fid, '\n

*************************************************** ***** ' );
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fprintf(fid, '\n

*************************************************** ***** ' );
fprintf(fid, '\n ********** NS2 and Distributions kstest2

************** ' );
fprintf(fid, '\n\n *** NS2 and Alpha kstest2 *** \n' );
fprintf(fid, 'sample size %d\n' , max_iter);
fprintf(fid, 'result %d\n' , h22);
fprintf(fid, 'p-value %d\n' , p22);
fprintf(fid, 'chi2statistic %d\n' , k22);
fprintf(fid, '\n *** NS2 and Logn kstest2 *** \n' );
fprintf(fid, 'sample size %d\n' , max_iter);
fprintf(fid, 'result %d\n' , h33);
fprintf(fid, 'p-value %d\n' , p33);
fprintf(fid, 'chi2statistic %d\n' , k33);
fprintf(fid, '\n *** NS2 and Wbl kstest2 *** \n' );
fprintf(fid, 'sample size %d\n' , max_iter);
fprintf(fid, 'result %d\n' , h44);
fprintf(fid, 'p-value %d\n' , p44);
fprintf(fid, 'chi2statistic %d\n' , k44);
cv = 1.36 * sqrt( (n_samples+n_samples) / (n_samples * n_samples) );
fprintf(fid, '\n\nCritical value %d\n' , cv);

fprintf(fid, '\n

*************************************************** ***** ' );
fprintf(fid, '\n

*************************************************** ***** ' );
fprintf(fid, '\n

*************************************************** ***** ' );
fprintf(fid, '\n ******** Distribution parameters in Table

************** ' );
fprintf(fid, '\nalpha-stable parameters_1(ALPHA): %d ' , p(:,1));
fprintf(fid, '\n' );
fprintf(fid, '\nalpha-stable parameters_2(BETA): %d ' , p(:,2));
fprintf(fid, '\n' );
fprintf(fid, '\nalpha-stable parameters_3(GAM): %d ' , p(:,3));
fprintf(fid, '\n' );
fprintf(fid, '\nalpha-stable parameters_4(DELTA): %d ' , p(:,4));
fprintf(fid, '\n' );
fprintf(fid, '\n ********************** ' )
fprintf(fid, '\nLog-normal parameters_1: %d ' , parmhat(:,1));
fprintf(fid, '\n' );
fprintf(fid, '\nLog-normal parameters_2: %d ' , parmhat(:,2));
fprintf(fid, '\n ********************** ' )
fprintf(fid, '\nWeibull parameters_1: %d ' , wbl(:,1));
fprintf(fid, '\n' );
fprintf(fid, '\nWeibull parameters_2: %d ' , wbl(:,2));
fprintf(fid, '\n ********************** ' )
fprintf(fid, '\nProb_ML_alpha= %d ' , Prob_ML_alpha);
fprintf(fid, '\n' );
fprintf(fid, '\nProb_ML_logn= %d ' , Prob_ML_logn);
fprintf(fid, '\n' );
fprintf(fid, '\nProb_ML_wbl = %d ' , Prob_ML_wbl);
fprintf(fid, '\n' );
fprintf(fid, '\nMed_Prob_ML_alpha= %d\n' , median(Prob_ML_alpha));
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fprintf(fid, 'Med_Prob_ML_logn= %d\n' , median(Prob_ML_logn));
fprintf(fid, 'Med_Prob_ML_wbl = %d\n' , median(Prob_ML_wbl));
fprintf(fid, '\n' )
fprintf(fid, '\n' )
fprintf(fid, '\n' )
fclose(fid);



Appendix B

NS2 Scripts

B.1 Main.tcl

This file illustrates main process.

# Main.tcl
# By Byungjin Cho

#================
# MAC Layer Setup
#================
set val(power) 0.001
set val(seq) [ lindex $argv 0];
set val(nn) [ lindex $argv 1];
set val(CSrange) [ lindex $argv 2];
set val(Grid) [ lindex $argv 3];
set val(Scen) [ lindex $argv 4];
set val(Noise) [ expr ( ( $val(power)/($val(CSrange) * $val(CSrange)

* $val(CSrange) * $val(CSrange))) /3.1623 ) ]
set val(nf) [ expr ( ( $val(Noise) * 1e12 ) ) ]
set val(PMrange) [ expr ( ( $val(Grid) * 1.5 ) ) ];
set val(NFrange) [ expr ( sqrt ( sqrt ($val(power)/$val(Noise))))]
puts "CSrange=$val(CSrange)"
puts "NFrange=$val(NFrange)"
Mac/802_11Ext set CWMin_ 15
Mac/802_11Ext set CWMax_ 1023
Mac/802_11Ext set SlotTime_ 0.000009
Mac/802_11Ext set SIFS_ 0.000016
Mac/802_11Ext set ShortRetryLimit_ 7
Mac/802_11Ext set LongRetryLimit_ 4
Mac/802_11Ext set HeaderDuration_ 0.000020
Mac/802_11Ext set SymbolDuration_ 0.000004
Mac/802_11Ext set BasicModulationScheme_ 0
Mac/802_11Ext set use_802_11a_flag_ true
Mac/802_11Ext set RTSThreshold_ 0
Mac/802_11Ext set MAC_DBG 0

64



65

Phy/WirelessPhyExt set HeaderDuration_ 0.000020
Phy/WirelessPhyExt set Pt_ $val(power)
Phy/WirelessPhyExt set freq_ 5.18e+9
Phy/WirelessPhyExt set BasicModulationScheme_ 0
Phy/WirelessPhyExt set trace_dist_ 1e6
Phy/WirelessPhyExt set PHY_DBG_ 0
Phy/WirelessPhyExt set PreambleCaptureSwitch_ 1
Phy/WirelessPhyExt set SINR_PreambleCapture_ 2.5118
Phy/WirelessPhyExt set DataCaptureSwitch_ 1
Phy/WirelessPhyExt set SINR_DataCapture_ 100.0
Phy/WirelessPhyExt set L_ 1.0
Phy/WirelessPhyExt set CSThresh_ [ expr ($val(power)/($val(

CSrange) * $val(CSrange) * $val(CSrange) * $val(CSrange))) ];
Phy/WirelessPhyExt set PowerMonitorThresh_ [ expr ($val(power)/($val(

PMrange) * $val(PMrange) * $val(PMrange) * $val(PMrange))) ];
Phy/WirelessPhyExt set noise_floor_ $val(Noise)

#============================
# Simulation Parameters Setup
#============================
set val(chan) Channel/WirelessChannel
set val(prop) Propagation/TwoRayGround
set val(netif) Phy/WirelessPhyExt
set val(mac) Mac/802_11Ext
set val(ifq) Queue/DropTail/PriQueue ;# interface queue type
set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model
set val(ifqlen) 50 ; # max packet in ifq
set val(rp) DumbAgent ;# routing protocol
set val(stop) 15.0 ;
set val(x) $val(Grid) ;
set val(y) $val(Grid) ;
set val(maxpkt) 10000 ;#[lindex $argv 3];
set val(pktsize) 1500 ;#[lindex $argv 4];
set val(rate) 6000kb ;#[lindex $argv 6];
set val(rseed) [ clock seconds];
set filename Den- trace -$val(seq)-[ lindex $argv 1]; #$val(nn)

#===============
# Initialization
#===============
# Create a ns simulator
set ns_ [new Simulator]
# Create a ns simulator
set topo [new Topography]
$topo load_flatgrid $val(x) $val(y)
set god_ [create-god [ expr $val(nn)]]
set tracefd [ open $filename.tr w]
$ns_ trace -all $tracefd
$ns_ use-newtrace
set chan [new $val(chan)]

#============================
# Mobile Node Parameter Setup
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#============================
$ns_ node-config -adhocRouting $val(rp) \
-llType $val(ll) \
-macType $val(mac) \
-ifqType $val(ifq) \
-ifqLen $val(ifqlen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-channel $chan \
-topoInstance $topo \
-agentTrace OFF \
-routerTrace OFF \
-macTrace OFF \
-movementTrace OFF \
-phyTrace OFF

#=================
# Nodes Definition
#=================
# Create nodes
for { set i 0} {$i < $val(nn) } { incr i} {

if { $i == 0 } {
$ns_ node-config -agentTrace OFF -routerTrace OFF -macTra ce ON -

movementTrace OFF -phyTrace ON
} else {

$ns_ node-config -agentTrace OFF -routerTrace OFF -macTra ce OFF
-movementTrace OFF -phyTrace OFF

}
set ID_($i) $i
set node_($i) [$ns_ node]
$node_($i) set id_ $ID_($i)
$node_($i) set address_ $ID_($i)
$node_($i) nodeid $ID_($i)

}

set val(sc) "./Den-scenario$val(Scen)"
source $val(sc)
set val(cb) "./Den-cbrtraffic$val(Scen)"
source $val(cb)

#=======================
# Simulation Termination
#=======================
proc finish { nf seq } {
global ns_ tracefd filename
$ns_ flush - trace
close $tracefd
exec awk -v nf=$nf -v SEQ=$seq -f Trace.awk $filename.tr &
exit 0
}
for { set i 0} {$i < $val(nn)} { incr i} {
$ns_ at $val(stop) "\$node_($i) reset"
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}
$ns_ at $val(stop) "finish $val(nf) $val(seq)"
$ns_ at $val(stop) "puts \" done\ " ; $ns_ halt"
$ns_ run



68

B.2 Scenario.tcl

This file illustrates Node grid.

# Scenario.tcl
# Program to make nodes randomly distributed in Grid
# By Byungjin Cho

#=================
# Set random seed
#=================
set opt(seed) [ clock seconds] ;#clicks -milliseconds];

#==================================
# Procedure for optional parameters
#==================================
proc usage {} {

global argv0
puts "\nusage: $argv0 \[-nn nodes\] \[-seed seed\] \[-grid grid \]\

n"
}

#=====================================
# Procedure to get optional parameters
#=====================================
proc getopt {argc argv} {

global opt
lappend optlist nn seed grid
for { set i 0} {$i < $argc} { incr i} {

set arg [ lindex $argv $i]
if {[ string range $arg 0 0] != "-" } continue

set name [ string range $arg 1 end]
set opt($name) [ lindex $argv [ expr $i+1]]

}
}

#======================================
# Procedure to generate random location
#======================================
proc create-cbr-connection { a b } {

global rng opt
# bcho modified 21/11/2010
set angle [$rng uniform 0.0 1.0]
set radius [$rng uniform 0.0 1.0]
set randX [ expr ($b/2)+ $b/2 * sqrt($radius) * cos($angle * 2* 3.14159)]
set randY [ expr ($b/2)+ $b/2 * sqrt($radius) * sin($angle * 2* 3.14159)]
puts "\$node_($a) set X_ $randX"
puts "\$node_($a) set Y_ $randY"

}

#======================
# Set random parameters
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#======================
getopt $argc $argv
set rng [new RNG]
$rng seed $opt(seed)

#==============
# Main Program
#==============
for { set i 0} {$i < [ expr $opt(nn) ] } { incr i} {

if {$i == 0 } {
puts "\$node_(0) set X_ [expr $opt(grid)/2]"
puts "\$node_(0) set Y_ [expr $opt(grid)/2]"

} else {
create-cbr-connection $i $opt(grid)

}
}
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B.3 Traffic.tcl

This file illustrates traffic generation.

# Traffic.tcl
# Programe to generate random traffic
# Modified by Byungjin Cho from CMU's Mobile code

# =================================
# Procedure for optional parameters
# =================================
proc usage {} {

global argv0

puts "\nusage: $argv0 \[-type cbr|tcp\] \[-nn nodes\] \[-seed s eed
\] \[-mc connections\] \[-rate rate\]\n"

}

# ====================================
# Procedure to get optional parameters
# ====================================
proc getopt {argc argv} {

global opt
lappend optlist nn seed mc rate type

for { set i 0} {$i < $argc} { incr i} {
set arg [ lindex $argv $i]
if {[ string range $arg 0 0] != "-" } continue

set name [ string range $arg 1 end]
set opt($name) [ lindex $argv [ expr $i+1]]

}
}
# #############
# CBR Procedure
# #############
proc create-cbr-connection { src dst } {

global rng cbr_cnt opt

set stime [$rng uniform 0.0 0.35] ;# 180.0
puts "#\n# $src connecting to $dst at time $stime\n#"

if {$src == 0 } {
set src [ expr $opt(nn)-2]

}
if {$dst == 0 } {

set dst [ expr $opt(nn)-2]
}
puts "set udp_($cbr_cnt) \[new Agent/UDP\]"

puts "\$ns_ attach-agent \$node_($src) \$udp_($cbr_cnt)"
puts "set null_($cbr_cnt) \[new Agent/Null\]"
puts "\$ns_ attach-agent \$node_($dst) \$null_($cbr_cnt)"
puts "set cbr_($cbr_cnt) \[new Application/Traffic/CBR\]"
puts "\$cbr_($cbr_cnt) set packetSize_ $opt(pktsize)"
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puts "\$cbr_($cbr_cnt) set rate_ $opt(rate)"
puts "\$cbr_($cbr_cnt) set random_ 1"
puts "\$cbr_($cbr_cnt) set maxpkts_ $opt(maxpkt)"
puts "\$cbr_($cbr_cnt) attach-agent \$udp_($cbr_cnt)"
puts "\$ns_ at $stime \" \$cbr_($cbr_cnt) start\ ""
puts "\$udp_($cbr_cnt) set packetSize_ 3000"
puts "\$ns_ connect \$udp_($cbr_cnt) \$null_($cbr_cnt)"
incr cbr_cnt

}

# #############
# TCP Procedure
# #############
proc create-tcp-connection { src dst } {

global rng cbr_cnt opt
set stime [$rng uniform 0.0 10.0]
puts "#\n# $src connecting to $dst at time $stime\n#"
puts "set tcp_($cbr_cnt) \[\$ns_ create-connection \

TCP \$node_($src) TCPSink \$node_($dst) 0\]" ;
puts "\$tcp_($cbr_cnt) set window_ 32"
puts "\$tcp_($cbr_cnt) set packetSize_ $opt(pktsize)"
puts "set ftp_($cbr_cnt) \[\$tcp_($cbr_cnt) attach-source FT P\]"
puts "\$ns_ at $stime \" \$ftp_($cbr_cnt) start\ ""
incr cbr_cnt

}

# ############
# Main Program
# ############
getopt $argc $argv
if { $opt( type ) == "" } {

usage
exit

} elseif { $opt( type ) == "cbr" } {
if { $opt(nn) == 0 || $opt(seed) == 0.0 || $opt(mc) == 0 || $opt(

rate) == 0 } {
usage
exit
}
if { $opt(interval) ≤ 0.0 } {
puts "\ninvalid sending rate $opt(rate)\n"
exit
}

}
puts "#\n# nodes: $opt(nn), max conn: $opt(mc), send rate: $opt(

interval), seed: $opt(seed)\n#"
set rng [new RNG]
$rng seed $opt(seed)
set u [new RandomVariable/Uniform]
$u set min_ 0
$u set max_ 100
$u use-rng $rng
set cbr_cnt 1
set src_cnt 0
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for { set i 1} {$i < [ expr $opt(nn) ] } { incr i} {
set x [$u value]
if {$x < 50} { continue ;}
incr src_cnt
set dst [ expr ($i+1) % [ expr $opt(nn) ] ]
if { $opt( type ) == "cbr" } {

create-cbr-connection $i $dst
} else {

create-tcp-connection $i $dst
}
if { $cbr_cnt == $opt(mc) } {

break
}
if {$x < 75} { continue ;}
set dst [ expr ($i+2) % [ expr $opt(nn) ] ]
if { $opt( type ) == "cbr" } {

create-cbr-connection $i $dst
} else {

create-tcp-connection $i $dst
}
if { $cbr_cnt == $opt(mc) } {

break
}

}
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B.4 Trace.awk

This file illustrates how interference information is extracted from Trace file.

# Trace.awk
# Extract interference power information in Trace file
# Modified by Byungjin Cho

#! /usr/bin/awk -f
#
# Parse a ns2 wireless trace file and generate the following s tats:
# - number of flows (senders)
# - time of simulation run
# - number of packets sent (at the Application)
# - number of packets received (at the Application)
# - number of packets dropped (at the Application)
# - number of collisions (802.11)
# - average delay
# - average throughput
# - average traffic rate (measured)
#
# Author: ? - I don't remember where I found the first version o f

this script :-(
# Modified by Julian Monteiro <jm@ime.usp.br>
#
#-------------------------------------------------- ----
function average (array) {

sum = 0;
items = 0;
for (i in array) {
sum += array[i];
items++;
}
if (sum == 0 || items == 0)
return 0;
else
return sum / items;
}

function average2 (array, substract) {
sum = 0;
items = 0;
for (i in array) {

sum += array[i];
items++;

}
if (sum == 0 || items == 0)

return 0;
else

return sum / (items-substract);
}
#-------------------------------------------------- ----
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function max( array ) {
begin=1;
for (i in array) {

if (begin || array[i] > largest){
largest = array[i];
begin = 0;

}
}
return largest;

}
#-------------------------------------------------- ----
function min(array) {

begin=1;
for (i in array){

if (begin || array[i] < smallest) {
smallest = array[i];
begin = 0;

}
}
return smallest;

}
#-------------------------------------------------- ----
function std_deviation(array, avg) {

total = 0;
items = 0;
for (i in array) {

∆ = array[i] - avg;
total += ∆* ∆;
items++;

}
if (total == 0 || items == 0)

return 0;
else

return sqrt (total/(items-1));
}
##================================================= ====
BEGIN {

if (!NEWTRACE) NEWTRACE="true" ;
if (!PKTSIZE) PKTSIZE = 1500;
if (!NODE_INITIAL_ENERGY) NODE_INITIAL_ENERGY = 100.0;
sinr_count=0;
total_packets_sent = 0;
total_packets_received = 0;
total_packets_dropped = 0;
first_packet_sent = 0;
last_packet_sent = 0;
last_packet_received = 0;
CTS_drop = 0;
count=0;

}
# ================================================== ====
{

if (NEWTRACE =="true" ) {
event = $1;
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time = $3;
node = $5;
nodesrc = $7;
nodeid = $9;
type = $19;
reason = $21;
packetid = $43;
packettype = $37;
src = $33;
dst = $35;
cbr_packetid = $49;
numhops = $51;
opt_numhops = $53;
energy = $17;
mac_type = $29;
mac_src = $27;
mac_dst = $25;
rtsid = $31;

# strip trailing .0 or :0 from src and dst
sub (/\.0$/, "" , src);
sub (/\.1$/, "" , src);
sub (/\.2$/, "" , src);
sub (/\.3$/, "" , src);
sub (/\.0$/, "" , dst);
sub (/\.1$/, "" , dst);
sub (/\.2$/, "" , dst);
sub (/\.3$/, "" , dst);

} else {
event = $1;

time = $2;
node = $3;
type = $4;
reason = $5;
packetid = $6;
packettype = $7;
src = $14;
dst = $15;
cbr_packetid = $6; #ESTA ERRADO! :-(
numhops = $19;
opt_numhops = $20;
sub (/^_ * /, "" , node);
sub (/_ * $/, "" , node);
sub (/^\[/, "" , src);
sub (/\:0$/, "" , src);
sub (/\:0$/, "" , dst);

}
if ( time < simulation_start || simulation_start == 0 )

simulation_start = time;
if ( time > simulation_end )

simulation_end = time;
#-------------
#--- DROP
#------------
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if ( ((time ≥ 9)&&(time < 14.0)) && (nodeid == 0 )
&& ( event == "r" || event == "d" )

) {
count++;
srcdst = mac_src "-" mac_dst;
sinr_count = srcdst " " rtsid "" count;
rts_sinr[sinr_count] = energy;

}
} # begin

END {

number_flows = 0;
sum_pkt = 0;
avg_collision = 0;
sum_rts = 0;
sum_rts_flow = 0;
avg_rts_collision = 0;
substract=0;
sum_sinr = 0;
count_sinr = 0;
file_sinr = sprintf ( "%s-SINR.dat" , SEQ);
for (count in rts_sinr) {

rts_interf[count] = rts_sinr[count]-nf;
if ((rts_interf[count] > 0.0000) && (count_sinr < 10000)) {

printf ( "%f\n" ,rts_interf[count])>>file_sinr;
sum_sinr = sum_sinr + rts_interf[count];
count_sinr++;

}

}
}
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B.5 Poisson.c

This file illustrates Poisson distribution. It is compiled by the following command [
gcc -g -o Poisson -lm Poisson.c ].

// Poisson.c
// Program for Poisson distribution
// By Byungjin Cho

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <time.h>
#include <sys/time.h>

int lambda = 0;
static double _fact( int n);
static double _pmf( int n);
static double _cdf( int n);
static int _icdf( double p);

int main( int argc, char * argv[])
{

double p = 0;
int n;
struct timeval tv;
if (argc < 2)
{

fprintf (stderr, "invalid parameter\n" );
return -1;

}
lambda = atoi(argv[1]);
gettimeofday(&tv, NULL);
srand(( unsigned int )tv.tv_usec * tv.tv_sec);
p = (( double )rand()/RAND_MAX);
n = _icdf(p);
fprintf(stdout, "%d" , n);
return n;

}

static double _pmf( int n)
{

double ret = 0.0;
if (n < 0)
{

ret = 0.0;
}
else if (n == 0)
{

ret = exp(( double )lambda * (-1));
}
else
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{
double ret1 = ( double )n * log(( double )lambda);
double ret2 = -1 * ( double )lambda;
double ret3 = 0;

int k = 0;

for (k = 1; k ≤ n; k++)
ret3 = ret3 - log(( double )k);

ret = exp(ret1 + ret2 + ret3);
}

return ret;
}

static double _cdf( int n)
{

double ret = 0.0;
int x;

if (n < 0)
{

ret = 0.0;
}
else
{

for (x = 0; x ≤ n; x++)
{

ret += _pmf(x);
}

}

return ret;
}

static int _icdf( double p)
{

int x;
double p0;

if (p < 0.0 || p > 1.0 || isnan(p))
{

return INT_MIN;
}

if (p == 0.0)
{

return -1;
}

if (p == 1.0)
{

return INT_MAX;
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}

x = lambda;
p0 = _cdf(x);
while (p0 ≤ p && x < INT_MAX)
{

p0 = _cdf(++x);
}
while (p0 > p && x ≥ 0)
{

p0 = _cdf(--x);
}

return x + 1;
}


